Portrait of Samira Ebrahimi Kahou

Samira Ebrahimi Kahou

Affiliate Member
Canada CIFAR AI Chair
Assistant Professor, University of Calgary, Deparment of Electrical and Software Engineering
Adjunct Professor, École de technologie suprérieure, School of Computer Science
Adjunct Professor, McGill University, School of Computer Science
Research Topics
Computer Vision
Deep Learning
Medical Machine Learning
Multimodal Learning
Natural Language Processing
Reinforcement Learning
Representation Learning

Biography

I am an Assistant Professor at the Schulich School of Engineering's Department of Electrical and Software Engineering at the University of Calgary. I am also an adjunct professor at the Department of Computer Engineering and Information Technology of ÉTS and an adjunct professor at the Computer School of McGill. Before joining ÉTS, I was a postdoctoral fellow working with Professor Doina Precup at McGill/Mila. Before my postdoc, I was a researcher at Microsoft Research Montréal.

I received my Ph.D. from Polytechnique Montréal/Mila in 2016 under the supervision of Professor Chris Pal. During my Ph.D. studies, I worked on computer vision and deep learning applied to emotion recognition, object tracking and knowledge distillation.

Current Students

Master's Research - École de technologie suprérieure
PhD - École de technologie suprérieure
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - McGill University
Co-supervisor :
Professional Master's - Université de Montréal
Master's Research - École de technologie suprérieure
Principal supervisor :
Master's Research - École de technologie suprérieure
PhD - École de technologie suprérieure
Principal supervisor :
PhD - McGill University
Co-supervisor :
Master's Research - École de technologie suprérieure
PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Principal supervisor :

Publications

CAMMARL: Conformal Action Modeling in Multi Agent Reinforcement Learning
Nikunj Gupta
Somjit Nath
Before taking actions in an environment with more than one intelligent agent, an autonomous agent may benefit from reasoning about the other… (see more) agents and utilizing a notion of a guarantee or confidence about the behavior of the system. In this article, we propose a novel multi-agent reinforcement learning (MARL) algorithm CAMMARL, which involves modeling the actions of other agents in different situations in the form of confident sets, i.e., sets containing their true actions with a high probability. We then use these estimates to inform an agent's decision-making. For estimating such sets, we use the concept of conformal predictions, by means of which, we not only obtain an estimate of the most probable outcome but get to quantify the operable uncertainty as well. For instance, we can predict a set that provably covers the true predictions with high probabilities (e.g., 95%). Through several experiments in two fully cooperative multi-agent tasks, we show that CAMMARL elevates the capabilities of an autonomous agent in MARL by modeling conformal prediction sets over the behavior of other agents in the environment and utilizing such estimates to enhance its policy learning.
Overcoming Interpretability and Accuracy Trade-off in Medical Imaging
Ivaxi Sheth
Source-free Domain Adaptation Requires Penalized Diversity
Laya Rafiee Sevyeri
Ivaxi Sheth
Farhood Farahnak
Alexandre See
Thomas Fevens
Mohammad Havaei
While neural networks are capable of achieving human-like performance in many tasks such as image classification, the impressive performance… (see more) of each model is limited to its own dataset. Source-free domain adaptation (SFDA) was introduced to address knowledge transfer between different domains in the absence of source data, thus, increasing data privacy. Diversity in representation space can be vital to a model`s adaptability in varied and difficult domains. In unsupervised SFDA, the diversity is limited to learning a single hypothesis on the source or learning multiple hypotheses with a shared feature extractor. Motivated by the improved predictive performance of ensembles, we propose a novel unsupervised SFDA algorithm that promotes representational diversity through the use of separate feature extractors with Distinct Backbone Architectures (DBA). Although diversity in feature space is increased, the unconstrained mutual information (MI) maximization may potentially introduce amplification of weak hypotheses. Thus we introduce the Weak Hypothesis Penalization (WHP) regularizer as a mitigation strategy. Our work proposes Penalized Diversity (PD) where the synergy of DBA and WHP is applied to unsupervised source-free domain adaptation for covariate shift. In addition, PD is augmented with a weighted MI maximization objective for label distribution shift. Empirical results on natural, synthetic, and medical domains demonstrate the effectiveness of PD under different distributional shifts.
Auxiliary Losses for Learning Generalizable Concept-based Models
Ivaxi Sheth
Learning from uncertain concepts via test time interventions
Ivaxi Sheth
Aamer Abdul Rahman
Laya Rafiee Sevyeri
Mohammad Havaei
With neural networks applied to safety-critical applications, it has become increasingly important to understand the defining features of de… (see more)cision-making. Therefore, the need to uncover the black boxes to rational representational space of these neural networks is apparent. Concept bottleneck model (CBM) encourages interpretability by predicting human-understandable concepts. They predict concepts from input images and then labels from concepts. Test time intervention, a salient feature of CBM, allows for human-model interactions. However, these interactions are prone to information leakage and can often be ineffective inappropriate communication with humans. We propose a novel uncertainty based strategy, \emph{SIUL: Single Interventional Uncertainty Learning} to select the interventions. Additionally, we empirically test the robustness of CBM and the effect of SIUL interventions under adversarial attack and distributional shift. Using SIUL, we observe that the interventions suggested lead to meaningful corrections along with mitigation of concept leakage. Extensive experiments on three vision datasets along with a histopathology dataset validate the effectiveness of our interventional learning.
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
Tristan Deleu
Stefan Bauer
Causal learning has long concerned itself with the accurate recovery of underlying causal mechanisms. Such causal modelling enables better e… (see more)xplanations of out-of-distribution data. Prior works on causal learning assume that the high-level causal variables are given. However, in machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors. In such settings, the entire Structural Causal Model (SCM) -- structure, parameters, \textit{and} high-level causal variables -- is unobserved and needs to be learnt from low-level data. We treat this problem as Bayesian inference of the latent SCM, given low-level data. For linear Gaussian additive noise SCMs, we present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent SCM from random, known interventions. Experiments are performed on synthetic datasets and a causally generated image dataset to demonstrate the efficacy of our approach. We also perform image generation from unseen interventions, thereby verifying out of distribution generalization for the proposed causal model.
Revisiting Learnable Affines for Batch Norm in Few-Shot Transfer Learning
Moslem Yazdanpanah
Aamer Abdul Rahman
Muawiz Chaudhary
Christian Desrosiers
Mohammad Havaei
Batch normalization is a staple of computer vision models, including those employed in few-shot learning. Batch nor-malization layers in con… (see more)volutional neural networks are composed of a normalization step, followed by a shift and scale of these normalized features applied via the per-channel trainable affine parameters
Latent Variable Sequential Set Transformers for Joint Multi-Agent Motion Prediction
Roger Girgis
Florian Golemo
Felipe Codevilla
Martin Weiss
Jim Aldon D'Souza
Felix Heide
Robust multi-agent trajectory prediction is essential for the safe control of robotic systems. A major challenge is to efficiently learn a r… (see more)epresentation that approximates the true joint distribution of contextual, social, and temporal information to enable planning. We propose Latent Variable Sequential Set Transformers which are encoder-decoder architectures that generate scene-consistent multi-agent trajectories. We refer to these architectures as “AutoBots”. The encoder is a stack of interleaved temporal and social multi-head self-attention (MHSA) modules which alternately perform equivariant processing across the temporal and social dimensions. The decoder employs learnable seed parameters in combination with temporal and social MHSA modules allowing it to perform inference over the entire future scene in a single forward pass efficiently. AutoBots can produce either the trajectory of one ego-agent or a distribution over the future trajectories for all agents in the scene. For the single-agent prediction case, our model achieves top results on the global nuScenes vehicle motion prediction leaderboard, and produces strong results on the Argoverse vehicle prediction challenge. In the multi-agent setting, we evaluate on the synthetic partition of TrajNet++ dataset to showcase the model’s socially-consistent predictions. We also demonstrate our model on general sequences of sets and provide illustrative experiments modelling the sequential structure of the multiple strokes that make up symbols in the Omniglot data. A distinguishing feature of AutoBots is that all models are trainable on a single desktop GPU (1080 Ti) in under 48h.
Simple Video Generation using Neural ODEs
David Kanaa
Vikram Voleti
Despite having been studied to a great extent, the task of conditional generation of sequences of frames, or videos, remains extremely chall… (see more)enging. It is a common belief that a key step towards solving this task resides in modelling accurately both spatial and temporal information in video signals. A promising direction to do so has been to learn latent variable models that predict the future in latent space and project back to pixels, as suggested in recent literature. Following this line of work and building on top of a family of models introduced in prior work, Neural ODE, we investigate an approach that models time-continuous dynamics over a continuous latent space with a differential equation with respect to time. The intuition behind this approach is that these trajectories in latent space could then be extrapolated to generate video frames beyond the time steps for which the model is trained. We show that our approach yields promising results in the task of future frame prediction on the Moving MNIST dataset with 1 and 2 digits.
Deep Learning for Detecting Extreme Weather Patterns
Mayur Mudigonda
Mayur Mudigonda, Prabhat Ram
Prabhat Ram
Karthik Kashinath
Evan Racah
Ankur Mahesh
Yunjie Liu
Christopher Beckham
Jim Biard
Thorsten Kurth
Sookyung Kim
Burlen Loring
Travis O'Brien
K. Kunkel
Kenneth E. Kunkel
M. Wehner
Michael F. Wehner … (see 2 more)
W. Collins
William D. Collins
Accounting for Variance in Machine Learning Benchmarks
Xavier Bouthillier
Pierre Delaunay
Mirko Bronzi
Assya Trofimov
Brennan Nichyporuk
Justin Szeto
Naz Sepah
Edward Raff
Kanika Madan
Vikram Voleti
Vincent Michalski
Dmitriy Serdyuk
Gael Varoquaux
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the l… (see more)earning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.
Multi-Image Super-Resolution for Remote Sensing using Deep Recurrent Networks
Md Rifat Arefin
Vincent Michalski
Pierre-Luc St-Charles
Alfredo Kalaitzis
Sookyung Kim
High-resolution satellite imagery is critical for various earth observation applications related to environment monitoring, geoscience, fore… (see more)casting, and land use analysis. However, the acquisition cost of such high-quality imagery due to the scarcity of providers and needs for high-frequency revisits restricts its accessibility in many fields. In this work, we present a data-driven, multi-image super resolution approach to alleviate these problems. Our approach is based on an end-to-end deep neural network that consists of an encoder, a fusion module, and a decoder. The encoder extracts co-registered highly efficient feature representations from low-resolution images of a scene. A Gated Re-current Unit (GRU)-based module acts as the fusion module, aggregating features into a combined representation. Finally, a decoder reconstructs the super-resolved image. The proposed model is evaluated on the PROBA-V dataset released in a recent competition held by the European Space Agency. Our results show that it performs among the top contenders and offers a new practical solution for real-world applications.