Portrait of Pablo Piantanida

Pablo Piantanida

Associate Academic Member
Full Professor, Université Paris-Saclay
Director, International Laboratory on Learning Systems (ILLS), McGill University
Associate professor, École de technologie supérieure (ETS), Department of Systems Engineering
Research Topics
AI Safety
Information Theory
Machine Learning Theory
Natural Language Processing

Biography

I am a professor at CentraleSupélec (Université Paris-Saclay) with the French National Centre for Scientific Research (CNRS), and Director of the International Laboratory on Learning Systems (ILLS) which gathers McGill University, École de technologie supérieure (ÉTS), Mila – Quebec AI Institute, France’s Centre Nationale de la Recherche Scientifique (CNRS), Université Paris-Saclay, and the École CentraleSupélec.

My research revolves around the application of advanced statistical and information-theoretic techniques to the field of machine learning. I am interested in developing rigorous techniques based on information measures and concepts for building safe and trustworthy AI systems and establishing confidence in their behavior and robustness, thereby securing their use in society. My primary areas of expertise include information theory, information geometry, learning theory, privacy, fairness, with applications to computer vision and natural language processing.

I obtained my undergraduate education at the University of Buenos Aires and pursued graduate studies in applied mathematics at Paris-Saclay University in France. Throughout my career, I have also held visiting positions at INRIA, Université de Montréal and Ecole de Technologie Supérieure (ÉTS), among others.

My earlier research encompassed the fields of information theory beyond distributed compression, statistical decision, universal source coding, cooperation, feedback, index coding, key generation, security, and privacy, among others.

I teach courses on machine learning, information theory and deep learning, covering topics such as statistical learning theory, information measures, statistical principles of neural networks.

Current Students

Independent visiting researcher - Université Paris-Saclay
PhD - McGill University
Principal supervisor :

Publications

Rainproof: An Umbrella To Shield Text Generators From Out-Of-Distribution Data
Maxime DARRIN
Pierre Colombo
Implementing effective control mechanisms to ensure the proper functioning and security of deployed NLP models, from translation to chatbots… (see more), is essential. A key ingredient to ensure safe system behaviour is Out-Of-Distribution (OOD) detection, which aims to detect whether an input sample is statistically far from the training distribution. Although OOD detection is a widely covered topic in classification tasks, most methods rely on hidden features output by the encoder. In this work, we focus on leveraging soft-probabilities in a black-box framework, i.e. we can access the soft-predictions but not the internal states of the model. Our contributions include: (i) RAINPROOF a Relative informAItioN Projection OOD detection framework; and (ii) a more operational evaluation setting for OOD detection. Surprisingly, we find that OOD detection is not necessarily aligned with task-specific measures. The OOD detector may filter out samples well processed by the model and keep samples that are not, leading to weaker performance. Our results show that RAINPROOF provides OOD detection methods more aligned with task-specific performance metrics than traditional OOD detectors.
Toward Stronger Textual Attack Detectors
Pierre Colombo
Marine Picot
Nathan Noiry
Guillaume Staerman
The landscape of available textual adversarial attacks keeps growing, posing severe threats and raising concerns regarding the deep NLP syst… (see more)em's integrity. However, the crucial problem of defending against malicious attacks has only drawn the attention of the NLP community. The latter is nonetheless instrumental in developing robust and trustworthy systems. This paper makes two important contributions in this line of search: (i) we introduce LAROUSSE, a new framework to detect textual adversarial attacks and (ii) we introduce STAKEOUT, a new benchmark composed of nine popular attack methods, three datasets, and two pre-trained models. LAROUSSE is ready-to-use in production as it is unsupervised, hyperparameter-free, and non-differentiable, protecting it against gradient-based methods. Our new benchmark STAKEOUT allows for a robust evaluation framework: we conduct extensive numerical experiments which demonstrate that LAROUSSE outperforms previous methods, and which allows to identify interesting factors of detection rate variations.
A Novel Information-Theoretic Objective to Disentangle Representations for Fair Classification
Pierre Colombo
Nathan Noiry
Guillaume Staerman
Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Eric Aubinais
Elisabeth Gassiat
Membership inference attacks (MIA) can reveal whether a particular data point was part of the training dataset, potentially exposing sensiti… (see more)ve information about individuals. This article provides theoretical guarantees by exploring the fundamental statistical limitations associated with MIAs on machine learning models. More precisely, we first derive the statistical quantity that governs the effectiveness and success of such attacks. We then deduce that in a very general regression setting with overfitting algorithms, attacks may have a high probability of success. Finally, we investigate several situations for which we provide bounds on this quantity of interest. Our results enable us to deduce the accuracy of potential attacks based on the number of samples and other structural parameters of learning models. In certain instances, these parameters can be directly estimated from the dataset.
RainProof: An Umbrella to Shield Text Generator from Out-Of-Distribution Data
Maxime DARRIN
Pierre Colombo
Implementing effective control mechanisms to ensure the proper functioning and security of deployed NLP models, from translation to chatbots… (see more), is essential. A key ingredient to ensure safe system behaviour is Out-Of-Distribution (OOD) detection, which aims to detect whether an input sample is statistically far from the training distribution. Although OOD detection is a widely covered topic in classification tasks, most methods rely on hidden features output by the encoder. In this work, we focus on leveraging soft-probabilities in a black-box framework, i.e. we can access the soft-predictions but not the internal states of the model. Our contributions include: (i) RAINPROOF a Relative informAItioN Projection OOD detection framework; and (ii) a more operational evaluation setting for OOD detection. Surprisingly, we find that OOD detection is not necessarily aligned with task-specific measures. The OOD detector may filter out samples well processed by the model and keep samples that are not, leading to weaker performance. Our results show that RAINPROOF provides OOD detection methods more aligned with task-specific performance metrics than traditional OOD detectors.
Transductive Learning for Textual Few-Shot Classification in API-based Embedding Models
Pierre Colombo
Victor Pellegrain
Malik Boudiaf
Victor Storchan
Myriam Tami
Ismail Ben Ayed
C'eline Hudelot
Proprietary and closed APIs are becoming increasingly common to process natural language, and are impacting the practical applications of na… (see more)tural language processing, including few-shot classification. Few-shot classification involves training a model to perform a new classification task with a handful of labeled data. This paper presents three contributions. First, we introduce a scenario where the embedding of a pre-trained model is served through a gated API with compute-cost and data-privacy constraints. Second, we propose a transductive inference, a learning paradigm that has been overlooked by the NLP community. Transductive inference, unlike traditional inductive learning, leverages the statistics of unlabeled data. We also introduce a new parameter-free transductive regularizer based on the Fisher-Rao loss, which can be used on top of the gated API embeddings. This method fully utilizes unlabeled data, does not share any label with the third-party API provider and could serve as a baseline for future research. Third, we propose an improved experimental setting and compile a benchmark of eight datasets involving multiclass classification in four different languages, with up to 151 classes. We evaluate our methods using eight backbone models, along with an episodic evaluation over 1,000 episodes, which demonstrate the superiority of transductive inference over the standard inductive setting.
Open-Set Likelihood Maximization for Few-Shot Learning
Malik Boudiaf
Etienne Bennequin
Myriam Tami
Antoine Toubhans
Celine Hudelot
Ismail Ben Ayed
We tackle the Few-Shot Open-Set Recognition (FSOSR) problem, i.e. classifying instances among a set of classes for which we only have a few … (see more)labeled samples, while simultaneously detecting instances that do not belong to any known class. We explore the popular transductive setting, which leverages the unlabelled query instances at inference. Motivated by the observation that existing transductive methods perform poorly in open-set scenarios, we propose a generalization of the maximum likelihood principle, in which latent scores down-weighing the influence of potential outliers are introduced alongside the usual parametric model. Our formulation embeds supervision constraints from the support set and additional penalties discouraging overconfident predictions on the query set. We proceed with a block-coordinate descent, with the latent scores and parametric model co-optimized alternately, thereby benefiting from each other. We call our resulting formulation Open-Set Likelihood Optimization (OSLO). OSLO is interpretable and fully modular; it can be applied on top of any pre-trained model seamlessly. Through extensive experiments, we show that our method surpasses existing inductive and transductive methods on both aspects of open-set recognition, namely inlier classification and outlier detection. Code is available at https://github.com/ebennequin/few-shot-open-set.
A Functional Data Perspective and Baseline On Multi-Layer Out-of-Distribution Detection
Eduardo Dadalto Câmara Gomes
Pierre Colombo
Guillaume Staerman
Nathan Noiry
On the incompatibility of accuracy and equal opportunity
Carlos Pinzón
Catuscia Palamidessi
Frank Valencia
A Halfspace-Mass Depth-Based Method for Adversarial Attack Detection
Marine Picot
Federica Granese
Guillaume Staerman
Marco Romanelli
Francisco Messina
Pierre Colombo
Unsupervised Layer-wise Score Aggregation for Textual OOD Detection
Maxime DARRIN
Guillaume Staerman
Eduardo Dadalto Câmara Gomes
Jackie Ck Cheung
Pierre Colombo
A Minimax Approach Against Multi-Armed Adversarial Attacks Detection
Federica Granese
Marco Romanelli
Siddharth Garg