Portrait of Michael Rabbat is unavailable

Michael Rabbat

Associate Industry Member
Associate professor, McGill University, Department of Electrical and Computer Engineering
Research Scientist, Facebook AI Research
Research Topics
Distributed Systems
Optimization
Representation Learning

Biography

Mike Rabbat is an associate industry member of Mila – Quebec Artificial Intelligence Institute and director of research science in the Fundamental AI Research (FAIR) team at Meta.

Rabbat’s research interests include efficient and robust representation learning, in particular self-supervised learning. He is also interested in optimization for efficient model training.

Publications

Green Federated Learning
Ashkan Yousefpour
Sheng Guo
Ashish V. Shenoy
Sayan Ghosh
Pierre Stock
Kiwan Maeng
Schalk-Willem Kruger
Carole-Jean Wu
Ilya Mironov
The rapid progress of AI is fueled by increasingly large and computationally intensive machine learning models and datasets. As a consequenc… (see more)e, the amount of compute used in training state-of-the-art models is exponentially increasing (doubling every 10 months between 2015 and 2022), resulting in a large carbon footprint. Federated Learning (FL) - a collaborative machine learning technique for training a centralized model using data of decentralized entities - can also be resource-intensive and have a significant carbon footprint, particularly when deployed at scale. Unlike centralized AI that can reliably tap into renewables at strategically placed data centers, cross-device FL may leverage as many as hundreds of millions of globally distributed end-user devices with diverse energy sources. Green AI is a novel and important research area where carbon footprint is regarded as an evaluation criterion for AI, alongside accuracy, convergence speed, and other metrics. In this paper, we propose the concept of Green FL, which involves optimizing FL parameters and making design choices to minimize carbon emissions consistent with competitive performance and training time. The contributions of this work are two-fold. First, we adopt a data-driven approach to quantify the carbon emissions of FL by directly measuring real-world at-scale FL tasks running on millions of phones. Second, we present challenges, guidelines, and lessons learned from studying the trade-off between energy efficiency, performance, and time-to-train in a production FL system. Our findings offer valuable insights into how FL can reduce its carbon footprint, and they provide a foundation for future research in the area of Green AI.
The Hidden Uniform Cluster Prior in Self-Supervised Learning
Mahmoud Assran
Randall Balestriero
Quentin Duval
Florian Bordes
Ishan Misra
Piotr Bojanowski
Nicolas Ballas
A successful paradigm in representation learning is to perform self-supervised pretraining using tasks based on mini-batch statistics (e.g.,… (see more) SimCLR, VICReg, SwAV, MSN). We show that in the formulation of all these methods is an overlooked prior to learn features that enable uniform clustering of the data. While this prior has led to remarkably semantic representations when pretraining on class-balanced data, such as ImageNet, we demonstrate that it can hamper performance when pretraining on class-imbalanced data. By moving away from conventional uniformity priors and instead preferring power-law distributed feature clusters, we show that one can improve the quality of the learned representations on real-world class-imbalanced datasets. To demonstrate this, we develop an extension of the Masked Siamese Networks (MSN) method to support the use of arbitrary features priors.
Where to Begin? On the Impact of Pre-Training and Initialization in Federated Learning
John Nguyen
Jianyu Wang
Kshitiz Malik
Maziar Sanjabi
AI Meta
lo-fi: distributed fine-tuning without communication
Mitchell Wortsman
Suchin Gururangan
Shen Li
Ali Farhadi
Ludwig Schmidt
Ari S. Morcos
When fine-tuning large neural networks, it is common to use multiple nodes and to communicate gradients at each optimization step. By contra… (see more)st, we investigate completely local fine-tuning, which we refer to as lo-fi. During lo-fi, each node fine-tunes independently without any communication. Then, the weights are averaged across nodes at the conclusion of fine-tuning. When fine-tuning DeiT-base and DeiT-large on ImageNet, this procedure matches accuracy in-distribution and improves accuracy under distribution shift compared to the baseline, which observes the same amount of data but communicates gradients at each step. We also observe that lo-fi matches the baseline's performance when fine-tuning OPT language models (up to 1.3B parameters) on Common Crawl. By removing the communication requirement, lo-fi reduces resource barriers for fine-tuning large models and enables fine-tuning in settings with prohibitive communication cost.
Contrastive Positive Unlabeled Learning
Anish Acharya
Sujay Sanghavi
Li Jing
Bhargav Bhushanam
I. Dhillon
Self-supervised pretraining on unlabeled data followed by supervised fine-tuning on labeled data is a popular paradigm for learning from lim… (see more)ited labeled examples. We extend this paradigm to the classical positive unlabeled (PU) setting, where the task is to learn a binary classifier given only a few labeled positive samples, and (often) a large amount of unlabeled samples (which could be positive or negative). We first propose a simple extension of standard infoNCE family of contrastive losses, to the PU setting; and show that this learns superior representations, as compared to existing unsupervised and supervised approaches. We then develop a simple methodology to pseudo-label the unlabeled samples using a new PU-specific clustering scheme; these pseudo-labels can then be used to train the final (positive vs. negative) classifier. Our method handily outperforms state-of-the-art PU methods over several standard PU benchmark datasets, while not requiring a-priori knowledge of any class prior (which is a common assumption in other PU methods). We also provide a simple theoretical analysis that motivates our methods.
Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design
Chuan Guo
Kamalika Chaudhuri
Pierre Stock
In private federated learning (FL), a server aggregates differentially private updates from a large number of clients in order to train a ma… (see more)chine learning model. The main challenge in this setting is balancing privacy with both classification accuracy of the learnt model as well as the number of bits communicated between the clients and server. Prior work has achieved a good trade-off by designing a privacy-aware compression mechanism, called the minimum variance unbiased (MVU) mechanism, that numerically solves an optimization problem to determine the parameters of the mechanism. This paper builds upon it by introducing a new interpolation procedure in the numerical design process that allows for a far more efficient privacy analysis. The result is the new Interpolated MVU mechanism that is more scalable, has a better privacy-utility trade-off, and provides SOTA results on communication-efficient private FL on a variety of datasets.
FedShuffle: Recipes for Better Use of Local Work in Federated Learning
Samuel Horváth
Maziar Sanjabi
Lin Xiao
Peter Richtárik
The practice of applying several local updates before aggregation across clients has been empirically shown to be a successful approach to o… (see more)vercoming the communication bottleneck in Federated Learning (FL). Such methods are usually implemented by having clients perform one or more epochs of local training per round while randomly reshuffling their finite dataset in each epoch. Data imbalance, where clients have different numbers of local training samples, is ubiquitous in FL applications, resulting in different clients performing different numbers of local updates in each round. In this work, we propose a general recipe, FedShuffle, that better utilizes the local updates in FL, especially in this regime encompassing random reshuffling and heterogeneity. FedShuffle is the first local update method with theoretical convergence guarantees that incorporates random reshuffling, data imbalance, and client sampling — features that are essential in large-scale cross-device FL. We present a comprehensive theoretical analysis of FedShuffle and show, both theoretically and empirically, that it does not suffer from the objective function mismatch that is present in FL methods that assume homogeneous updates in heterogeneous FL setups, such as FedAvg (McMahan et al., 2017). In addition, by combining the ingredients above, FedShuffle improves upon FedNova (Wang et al., 2020), which was previously proposed to solve this mismatch. Similar to Mime (Karimireddy et al., 2020), we show that FedShuffle with momentum variance reduction (Cutkosky & Orabona, 2019) improves upon non-local methods under a Hessian similarity assumption.
Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity
Kiwan Maeng
Haiyu Lu
Luca Melis
John Nguyen
Carole-Jean Wu
Privacy-Aware Compression for Federated Data Analysis
Kamalika Chaudhuri
Chuan Guo
Federated data analytics is a framework for distributed data analysis where a server compiles noisy responses from a group of distributed lo… (see more)w-bandwidth user devices to estimate aggregate statistics. Two major challenges in this framework are privacy, since user data is often sensitive, and compression, since the user devices have low network bandwidth. Prior work has addressed these challenges separately by combining standard compression algorithms with known privacy mechanisms. In this work, we take a holistic look at the problem and design a family of privacy-aware compression mechanisms that work for any given communication budget. We first propose a mechanism for transmitting a single real number that has optimal variance under certain conditions. We then show how to extend it to metric differential privacy for location privacy use-cases, as well as vectors, for application to federated learning. Our experiments illustrate that our mechanism can lead to better utility vs. compression trade-offs for the same privacy loss in a number of settings.
Masked Siamese Networks for Label-Efficient Learning
Mahmoud Assran
Mathilde Caron
Ishan Misra
Piotr Bojanowski
Florian Bordes
Armand Joulin
Nicolas Ballas
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the … (see more)representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.
Masked Siamese Networks for Label-Efficient Learning
Mahmoud Assran
Mathilde Caron
Ishan Misra
Piotr Bojanowski
Florian Bordes
Armand Joulin
Nicolas Ballas
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the … (see more)representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.
Privacy-aware compression for federated data analysis
Kamalika Chaudhuri
Chuan Guo
Federated data analytics is a framework for distributed data analysis where a server compiles noisy responses from a group of distributed lo… (see more)w-bandwidth user devices to estimate aggregate statistics. Two major challenges in this framework are privacy, since user data is often sensitive, and compression, since the user devices have low network bandwidth. Prior work has addressed these challenges separately by combining standard compression algorithms with known privacy mechanisms. In this work, we take a holistic look at the problem and design a family of privacy-aware compression mechanisms that work for any given communication budget. We first propose a mechanism for transmitting a single real number that has optimal variance under certain conditions. We then show how to extend it to metric differential privacy for location privacy use-cases, as well as vectors, for application to federated learning. Our experiments illustrate that our mechanism can lead to better utility vs. compression trade-offs for the same privacy loss in a number of settings.