Portrait of Adriana Romero Soriano

Adriana Romero Soriano

Core Industry Member
Canada CIFAR AI Chair
Adjunct professor, McGill University, School of Computer Science
Research Scientist, Meta AI Research (FAIR)
Research Topics
Computer Vision
Deep Learning
Generative Models

Biography

Adriana Romero-Soriano is a research scientist in the Fundamental AI Research (FAIR) team at Meta, adjunct professor at McGill University, core industry member of Mila – Quebec Artificial Intelligence Institute and a Canada CIFAR AI Chair.

Romero-Soriano’s research lies at the intersection of generative models, computer vision and responsible AI, while her most recent work focuses on improving the quality, controllability, consistency and representation diversity of visual content creation systems.

She received her PhD from the University of Barcelona, where she worked with Carlo Gatta, and then spent two years as a postdoctoral researcher at Mila with Yoshua Bengio.

Current Students

Collaborating researcher - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Improved baselines for vision-language pre-training
Enrico Fini
Pietro Astolfi
Jakob Verbeek
Michal Drozdzal
Controllable Image Generation via Collage Representations
Arantxa Casanova
Marlene Careil
Jakob Verbeek
Michal Drozdzal
Instance-Conditioned GAN Data Augmentation for Representation Learning
Pietro Astolfi
Arantxa Casanova
Jakob Verbeek
Michal Drozdzal
Learning to Substitute Ingredients in Recipes
Bahare Fatemi
Quentin Duval
Rohit Girdhar
Michal Drozdzal
Recipe personalization through ingredient substitution has the potential to help people meet their dietary needs and preferences, avoid pote… (see more)ntial allergens, and ease culinary exploration in everyone's kitchen. To address ingredient substitution, we build a benchmark, composed of a dataset of substitution pairs with standardized splits, evaluation metrics, and baselines. We further introduce Graph-based Ingredient Substitution Module (GISMo), a novel model that leverages the context of a recipe as well as generic ingredient relational information encoded within a graph to rank plausible substitutions. We show through comprehensive experimental validation that GISMo surpasses the best performing baseline by a large margin in terms of mean reciprocal rank. Finally, we highlight the benefits of GISMo by integrating it in an improved image-to-recipe generation pipeline, enabling recipe personalization through user intervention. Quantitative and qualitative results show the efficacy of our proposed system, paving the road towards truly personalized cooking and tasting experiences.
On the Challenges of using Reinforcement Learning in Precision Drug Dosing: Delay and Prolongedness of Action Effects
Sumana Basu
M. Legault
Drug dosing is an important application of AI, which can be formulated as a Reinforcement Learning (RL) problem. In this paper, we identify … (see more)two major challenges of using RL for drug dosing: delayed and prolonged effects of administering medications, which break the Markov assumption of the RL framework. We focus on prolongedness and define PAE-POMDP (Prolonged Action Effect-Partially Observable Markov Decision Process), a subclass of POMDPs in which the Markov assumption does not hold specifically due to prolonged effects of actions. Motivated by the pharmacology literature, we propose a simple and effective approach to converting drug dosing PAE-POMDPs into MDPs, enabling the use of the existing RL algorithms to solve such problems. We validate the proposed approach on a toy task, and a challenging glucose control task, for which we devise a clinically-inspired reward function. Our results demonstrate that: (1) the proposed method to restore the Markov assumption leads to significant improvements over a vanilla baseline; (2) the approach is competitive with recurrent policies which may inherently capture the prolonged affect of actions; (3) it is remarkably more time and memory efficient than the recurrent baseline and hence more suitable for real-time dosing control systems; and (4) it exhibits favourable qualitative behavior in our policy analysis.
Graph Inductive Biases in Transformers without Message Passing
Liheng Ma
Chen Lin
Derek Lim
Puneet K. Dokania
Philip Torr
Ser-Nam Lim
Transformers for graph data are increasingly widely studied and successful in numerous learning tasks. Graph inductive biases are crucial fo… (see more)r Graph Transformers, and previous works incorporate them using message-passing modules and/or positional encodings. However, Graph Transformers that use message-passing inherit known issues of message-passing, and differ significantly from Transformers used in other domains, thus making transfer of research advances more difficult. On the other hand, Graph Transformers without message-passing often perform poorly on smaller datasets, where inductive biases are more crucial. To bridge this gap, we propose the Graph Inductive bias Transformer (GRIT) -- a new Graph Transformer that incorporates graph inductive biases without using message passing. GRIT is based on several architectural changes that are each theoretically and empirically justified, including: learned relative positional encodings initialized with random walk probabilities, a flexible attention mechanism that updates node and node-pair representations, and injection of degree information in each layer. We prove that GRIT is expressive -- it can express shortest path distances and various graph propagation matrices. GRIT achieves state-of-the-art empirical performance across a variety of graph datasets, thus showing the power that Graph Transformers without message-passing can deliver.
Graph Inductive Biases in Transformers without Message Passing
Liheng Ma
Chen Lin
Derek Lim
Puneet K. Dokania
Philip Torr
Ser-Nam Lim
Transformers for graph data are increasingly widely studied and successful in numerous learning tasks. Graph inductive biases are crucial fo… (see more)r Graph Transformers, and previous works incorporate them using message-passing modules and/or positional encodings. However, Graph Transformers that use message-passing inherit known issues of message-passing, and differ significantly from Transformers used in other domains, thus making transfer of research advances more difficult. On the other hand, Graph Transformers without message-passing often perform poorly on smaller datasets, where inductive biases are more crucial. To bridge this gap, we propose the Graph Inductive bias Transformer (GRIT) — a new Graph Transformer that incorporates graph inductive biases without using message passing. GRIT is based on several architectural changes that are each theoretically and empirically justified, including: learned relative positional encodings initialized with random walk probabilities, a flexible attention mechanism that updates node and node-pair representations, and injection of degree information in each layer. We prove that GRIT is expressive — it can express shortest path distances and various graph propagation matrices. GRIT achieves state-of-the-art empirical performance across a variety of graph datasets, thus showing the power that Graph Transformers without message-passing can deliver.
Revisiting Hotels-50K and Hotel-ID
Aarash Feizi
Arantxa Casanova
In this paper, we propose revisited versions for two recent hotel recognition datasets: Hotels-50K and Hotel-ID. The revisited versions prov… (see more)ide evaluation setups with different levels of difficulty to better align with the intended real-world application, i.e. countering human trafficking. Real-world scenarios involve hotels and locations that are not captured in the current data sets, therefore it is important to consider evaluation settings where classes are truly unseen. We test this setup using multiple state-of-the-art image retrieval models and show that as expected, the models’ performances decrease as the evaluation gets closer to the real-world unseen settings. The rankings of the best performing models also change across the different evaluation settings, which further motivates using the proposed revisited datasets.
Harvesting Mature Relation Extraction Models from Limited Seed Knowledge: A Self-Development Framework for DS Rule Expansion
Raphael Hoffmann
Congle Zhang
Xiao Ling
Yankai Lin
Shiqi Shen
Zhiyuan Liu
Huanbo Luan
Christopher D Manning
M. Surdeanu
John Bauer
Pietro Lio’
Xuanhui Wang
Cheng Li
Nadav Golbandi
Bendersky Marc
Najork. 2018
The
Wentao Wu … (see 2 more)
Hongsong Li
Haixun Wang
Distantly-supervised relation extraction 001 (DSRE) is an effective method to scale relation 002 extraction (RE) to large unlabeled corpora … (see more)003 with the utilization of knowledge bases (KBs), 004 but suffers from the scale of KBs and the 005 introduced noise. 006 To alleviate the above two problems, we 007 propose a novel framework called S elf-008 devel O pment r U le ex P ansion ( SOUP ), which 009 starts from limited amount of labeled data 010 and continuously produces low-noise labels on 011 large-scaled unlabeled data by a growing learn-012 able logical rules set. 013 Specifically, SOUP achieves a mutual enhance-014 ment of RE model and logical rules set, first 015 a RE model is trained on the labeled data to 016 summarize the knowledge, then the knowledge 017 is utilized to explore candidate rules from unla-018 beled data, finally high-quality candidates are 019 selected in a graph-based ranking manner to ex-020 tend the logical rules set and new rule-labeled 021 data are provided for better RE model training. 022 Experiments on wiki20 dataset demonstrate 023 that, with limited seed knowledge from small-024 scaled manually labeled data, SOUP achieves 025 significant improvement compared to baselines 026 by producing continuous growth of both logical 027 rules and the RE model, and that labeling noise 028 of SOUP is much less than DS. Furthermore, 029 RE model enhanced by SOUP with 1.6k logical 030 rules learned from prior knowledge could pro-031 duce an equivalent performance to the model 032 trained on data labeled in DS manner by 72k 033 relational facts of KBs. 034
TaHiD: Tackling Data Hiding in Fake News Detection with News Propagation Networks
Adrien Benamira
Benjamin Devillers
Etienne Lesot
Ayush K. Ray
Manal Saadi
Fragkiskos D 587
Steven Bird
Ewan Klein
Edward Loper
Nat-593
Carlos Castillo
Marcelo Mendoza
Barbara Poblete
Daryna Dementieva
Alexander Panchenko
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Ashish Vaswani
Noam M. Shazeer … (see 8 more)
Niki Parmar
Pietro Lio’
Yaqing Wang
Fenglong Ma
Zhiwei Jin
Ye Yuan
Fake news with detrimental societal effects has 001 attracted extensive attention and research. De-002 spite early success, the state-of-the… (see more)-art meth-003 ods fall short of considering the propagation 004 of news. News propagates at different times 005 through different mediums, including users, 006 comments, and sources, which form the news 007 propagation network. Moreover, the serious 008 problem of data hiding arises, which means 009 that fake news publishers disguise fake news 010 as real to confuse users by deleting comments 011 that refute the rumor or deleting the news itself 012 when it has been spread widely. Existing meth-013 ods do not consider the propagation of news 014 and fail to identify what matters in the process, 015 which leads to fake news hiding in the prop-016 agation network and escaping from detection. 017 Inspired by the propagation of news, we pro-018 pose a novel fake news detection framework 019 named TaHiD, which models the propagation 020 as a heterogeneous dynamic graph and contains 021 the propagation attention module to measure 022 the influence of different propagation. Exper-023 iments demonstrate that TaHiD extracts use-024 ful information from the news propagation net-025 work and outperforms state-of-the-art methods 026 on several benchmark datasets for fake news 027 detection. Additional studies also show that 028 TaHiD is capable of identifying fake news in 029 the case of data hiding. 030
Graph Attention Networks with Positional Embeddings
A Simple and Effective Model for Multi-Hop Question Generation
Jimmy Lei Ba
Jamie Ryan Kiros
Geoffrey E Hin-602
Peter W. Battaglia
Jessica Blake
Chandler Hamrick
Vic-613 tor Bapst
Alvaro Sanchez
Vinicius Zambaldi
M. Malinowski
Andrea Tacchetti
David Raposo
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam … (see 72 more)
Girish Sastry
Koustuv Sinha
Shagun Sodhani
Jin Dong
William L. Hamilton
Clutrr
Nitish Srivastava
Geoffrey Hinton
Alex Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov. 2014
Gabriel Stanovsky
Julian Michael
Luke Zettlemoyer
Dan Su
Yan Xu
Wenliang Dai
Ziwei Ji
Tiezheng Yu
Minghao Tu
Kevin Huang
Guangtao Wang
Jing Huang
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin. 2017
Attention
Petar Veliˇckovi´c
Guillem Cucurull
Arantxa Casanova
Pietro Lio’
Johannes Welbl
Pontus Stenetorp
Yonghui Wu
Mike Schuster
Quoc Zhifeng Chen
Mohammad Le
Wolfgang Norouzi
Macherey
M. Krikun
Yuan Cao
Qin Gao
William W. Cohen
Jianxing Yu
Xiaojun Quan
Qinliang Su
Jian Yin
Yuyu Zhang
Hanjun Dai
Zornitsa Kozareva
Chen Zhao
Chenyan Xiong
Corby Rosset
Xia
Paul Song
Bennett Saurabh
Tiwary
Yao Zhao
Xiaochuan Ni
Yuanyuan Ding
Qingyu Zhou
Nan Yang
Furu Wei
Chuanqi Tan
Previous research on automated question gen-001 eration has almost exclusively focused on gen-002 erating factoid questions whose answers ca… (see more)n 003 be extracted from a single document. How-004 ever, there is an increasing interest in develop-005 ing systems that are capable of more complex 006 multi-hop question generation (QG), where an-007 swering the question requires reasoning over 008 multiple documents. In this work, we pro-009 pose a simple and effective approach based on 010 the transformer model for multi-hop QG. Our 011 approach consists of specialized input repre-012 sentations, a supporting sentence classification 013 objective, and training data weighting. Prior 014 work on multi-hop QG considers the simpli-015 fied setting of shorter documents and also ad-016 vocates the use of entity-based graph struc-017 tures as essential ingredients in model design. 018 On the contrary, we showcase that our model 019 can scale to the challenging setting of longer 020 documents as input, does not rely on graph 021 structures, and substantially outperforms the 022 state-of-the-art approaches as measured by au-023 tomated metrics and human evaluation. 024