Home

Inspiring the development of artificial intelligence for the benefit of all 

A professor talks to his students in a café/lounge.

Located in the heart of Quebec’s AI ecosystem, Mila is a community of more than 1,200 researchers specializing in machine learning and dedicated to scientific excellence and innovation.

About

Featured

Faculty 

Founded in 1993 by Professor Yoshua Bengio, Mila today brings together over 140 professors affiliated with Université de Montréal, McGill University, Polytechnique Montréal and HEC Montréal. Mila also welcomes professors from Université Laval, Université de Sherbrooke, École de technologie supérieure (ÉTS) and Concordia University. 

Browse the online directory

Photo of Yoshua Bengio

Latest Publications

3D Foundation Model-Based Loop Closing for Decentralized Collaborative SLAM
Pierre-Yves Lajoie
Benjamin Ramtoula
Daniele De Martini
Decentralized Collaborative Simultaneous Localization and Mapping (C-SLAM) techniques often struggle to identify map overlaps due to signifi… (see more)cant viewpoint variations among robots. Motivated by recent advancements in 3D foundation models, which can register images despite large viewpoint differences, we propose a robust loop closing approach that leverages these models to establish inter-robot measurements. In contrast to resource-intensive methods requiring full 3D reconstruction within a centralized map, our approach integrates foundation models into existing SLAM pipelines, yielding scalable and robust multi-robot mapping. Our contributions include: 1) integrating 3D foundation models to reliably estimate relative poses from monocular image pairs within decentralized C-SLAM; 2) introducing robust outlier mitigation techniques critical to the use of these relative poses and 3) developing specialized pose graph optimization formulations that efficiently resolve scale ambiguities. We evaluate our method against state-of-the-art approaches, demonstrating improvements in localization and mapping accuracy, alongside significant gains in computational and memory efficiency. These results highlight the potential of our approach for deployment in large-scale multi-robot scenarios.
The role of Large Language Models in IoT security: A systematic review of advances, challenges, and opportunities
Saeid Jamshidi
Negar Shahabi
Amin Nikanjam
Kawser Wazed Nafi
Carol Fung
Predicting the Subhalo Mass Functions in Simulations from Galaxy Images
Tri Nguyen
J. Rose
Chris Lovell
Francisco Villaescusa-navarro
Strong gravitational lensing provides a powerful tool to directly infer the dark matter (DM) subhalo mass function (SHMF) in lens galaxies. … (see more)However, comparing observationally inferred SHMFs to theoretical predictions remains challenging, as the predicted SHMF can vary significantly between galaxies - even within the same cosmological model - due to differences in the properties and environment of individual galaxies. We present a machine learning framework to infer the galaxy-specific predicted SHMF from galaxy images, conditioned on the assumed inverse warm DM particle mass
From Efficiency to Equity: Measuring Fairness in Preference Learning
S. Gowaikar
Rashid A. Mushkani
As AI systems, particularly generative models, increasingly influence decision-making, ensuring that they are able to fairly represent diver… (see more)se human preferences becomes crucial. This paper introduces a novel framework for evaluating epistemic fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice. We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models. We validate our approach using a diverse collection of datasets, covering both visual preferences and textual content. Our analysis reveals variations in model performance across users, highlighting potential epistemic injustices. We explore pre-processing and in-processing techniques to mitigate these inequalities, demonstrating a complex relationship between model efficiency and fairness. This work contributes to AI ethics by providing a framework for evaluating and improving epistemic fairness in preference learning models, offering insights for developing more inclusive AI systems in contexts where diverse human preferences are crucial.

AI for Humanity

Socially responsible and beneficial development of AI is a fundamental component of Mila’s mission. As a leader in the field, we wish to contribute to social dialogue and the development of applications that will benefit society.

Learn more

A person looks up at a starry sky.