The next cohort of our program, designed to empower policy professionals with a comprehensive understanding of AI, will take place in Ottawa on November 28 and 29.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play
Low-resource languages often face challenges in acquiring high-quality language data due to the reliance on translation-based methods, which… (see more) can introduce the translationese effect. This phenomenon results in translated sentences that lack fluency and naturalness in the target language. In this paper, we propose a novel approach for data collection by leveraging storyboards to elicit more fluent and natural sentences. Our method involves presenting native speakers with visual stimuli in the form of storyboards and collecting their descriptions without direct exposure to the source text. We conducted a comprehensive evaluation comparing our storyboard-based approach with traditional text translation-based methods in terms of accuracy and fluency. Human annotators and quantitative metrics were used to assess translation quality. The results indicate a preference for text translation in terms of accuracy, while our method demonstrates worse accuracy but better fluency in the language focused.
2024-01-01
International Conference on Language Resources and Evaluation (published)
Most reinforcement learning methods for adaptive-traffic-signal-control require training from scratch to be applied on any new intersection … (see more)or after any modification to the road network, traffic distribution, or behavioral constraints experienced during training. Considering 1) the massive amount of experience required to train such methods, and 2) that experience must be gathered by interacting in an exploratory fashion with real road-network-users, such a lack of transferability limits experimentation and applicability. Recent approaches enable learning policies that generalize for unseen road-network topologies and traffic distributions, partially tackling this challenge. However, the literature remains divided between the learning of cyclic (the evolution of connectivity at an intersection must respect a cycle) and acyclic (less constrained) policies, and these transferable methods 1) are only compatible with cyclic constraints and 2) do not enable coordination. We introduce a new model-based method, MuJAM, which, on top of enabling explicit coordination at scale for the first time, pushes generalization further by allowing a generalization to the controllers' constraints. In a zero-shot transfer setting involving both road networks and traffic settings never experienced during training, and in a larger transfer experiment involving the control of 3,971 traffic signal controllers in Manhattan, we show that MuJAM, using both cyclic and acyclic constraints, outperforms domain-specific baselines as well as another transferable approach.
2024-01-01
IEEE Open Journal of Intelligent Transportation Systems (published)
Object detection techniques have been widely studied, utilized in various works, and have exhibited robust performance on images with suffic… (see more)ient luminance. However, these approaches typically struggle to extract valuable features from low-luminance images, which often exhibit blurriness and dim appearence, leading to detection failures. To overcome this issue, we introduce an innovative unsupervised feature domain knowledge distillation (KD) framework. The proposed framework enhances the generalization capability of neural networks across both low-and high-luminance domains without incurring additional computational costs during testing. This improvement is made possible through the integration of generative adversarial networks and our proposed unsupervised KD process. Furthermore, we introduce a region-based multiscale discriminator designed to discern feature domain discrepancies at the object level rather than from the global context. This bolsters the joint learning process of object detection and feature domain distillation tasks. Both qualitative and quantitative assessments shown that the proposed method, empowered by the region-based multiscale discriminator and the unsupervised feature domain distillation process, can effectively extract beneficial features from low-luminance images, outperforming other state-of-the-art approaches in both low-and sufficient-luminance domains.
Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a … (see more)diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes.
This paper explores a scenario in which a malicious actor employs a multi-armed attack strategy to manipulate data samples, offering them va… (see more)rious avenues to introduce noise into the dataset. Our central objective is to protect the data by detecting any alterations to the input. We approach this defensive strategy with utmost caution, operating in an environment where the defender possesses significantly less information compared to the attacker. Specifically, the defender is unable to utilize any data samples for training a defense model or verifying the integrity of the channel. Instead, the defender relies exclusively on a set of pre-existing detectors readily available"off the shelf". To tackle this challenge, we derive an innovative information-theoretic defense approach that optimally aggregates the decisions made by these detectors, eliminating the need for any training data. We further explore a practical use-case scenario for empirical evaluation, where the attacker possesses a pre-trained classifier and launches well-known adversarial attacks against it. Our experiments highlight the effectiveness of our proposed solution, even in scenarios that deviate from the optimal setup.