Publications

Dynamic Abstractions: Building the Next Generation of Cognitive Tools and Interfaces
Sangho Suh
Hai Dang
Ryan Yen
Josh M. Pollock
Rubaiat Habib Kazi
Hariharan Subramonyam
Jingyi Li
Nazmus Saquib
Arvind Satyanarayan
Effective Protein-Protein Interaction Exploration with PPIretrieval
Chenqing Hua
Connor W. Coley
Shuangjia Zheng
EnzymeFlow: Generating Reaction-specific Enzyme Catalytic Pockets through Flow Matching and Co-Evolutionary Dynamics
Chenqing Hua
Yong Liu
Dinghuai Zhang
Odin Zhang
Sitao Luan
Kevin K Yang
Shuangjia Zheng
Molphenix: A Multimodal Foundation Model for PhenoMolecular Retrieval
Philip Fradkin
Puria Azadi Moghadam
Karush Suri
Frederik Wenkel
Maciej Sypetkowski
Predicting molecular impact on cellular function is a core challenge in therapeutic design. Phenomic experiments, designed to capture cellu… (see more)lar morphology, utilize microscopy based techniques and demonstrate a high throughput solution for uncovering molecular impact on the cell. In this work, we learn a joint latent space between molecular structures and microscopy phenomic experiments, aligning paired samples with contrastive learning. Specifically, we study the problem of Contrastive PhenoMolecular Retrieval, which consists of zero-shot molecular structure identification conditioned on phenomic experiments. We assess challenges in multi-modal learning of phenomics and molecular modalities such as experimental batch effect, inactive molecule perturbations, and encoding perturbation concentration. We demonstrate improved multi-modal learner retrieval through (1) a uni-modal pre-trained phenomics model, (2) a novel inter sample similarity aware loss, and (3) models conditioned on a representation of molecular concentration. Following this recipe, we propose MolPhenix, a molecular phenomics model. MolPhenix leverages a pre-trained phenomics model to demonstrate significant performance gains across perturbation concentrations, molecular scaffolds, and activity thresholds. In particular, we demonstrate an 8.1
Structure Language Models for Protein Conformation Generation
Jiarui Lu
Xiaoyin Chen
Stephen Zhewen Lu
Chence Shi
Hongyu Guo
Can Safety Fine-Tuning Be More Principled? Lessons Learned from Cybersecurity
David Williams-King
Linh Le
As LLMs develop increasingly advanced capabilities, there is an increased need to minimize the harm that could be caused to society by certa… (see more)in model outputs; hence, most LLMs have safety guardrails added, for example via fine-tuning. In this paper, we argue the position that current safety fine-tuning is very similar to a traditional cat-and-mouse game (or arms race) between attackers and defenders in cybersecurity. Model jailbreaks and attacks are patched with bandaids to target the specific attack mechanism, but many similar attack vectors might remain. When defenders are not proactively coming up with principled mechanisms, it becomes very easy for attackers to sidestep any new defenses. We show how current defenses are insufficient to prevent new adversarial jailbreak attacks, reward hacking, and loss of control problems. In order to learn from past mistakes in cybersecurity, we draw analogies with historical examples and develop lessons learned that can be applied to LLM safety. These arguments support the need for new and more principled approaches to designing safe models, which are architected for security from the beginning. We describe several such approaches from the AI literature.
Epistemic Integrity in Large Language Models
Bijean Ghafouri
Shahrad Mohammadzadeh
James Zhou
Pratheeksha Nair
Jacob-Junqi Tian
Mayank Goel
Jean-François Godbout
Kellin Pelrine
Large language models are increasingly relied upon as sources of information, but their propensity for generating false or misleading statem… (see more)ents with high confidence poses risks for users and society. In this paper, we confront the critical problem of epistemic miscalibration—where a model's linguistic assertiveness fails to reflect its true internal certainty. We introduce a new human-labeled dataset and a novel method for measuring the linguistic assertiveness of Large Language Models which cuts error rates by over 50% relative to previous benchmarks. Validated across multiple datasets, our method reveals a stark misalignment between how confidently models linguistically present information and their actual accuracy. Further human evaluations confirm the severity of this miscalibration. This evidence underscores the urgent risk of the overstated certainty Large Language Models hold which may mislead users on a massive scale. Our framework provides a crucial step forward in diagnosing and correcting this miscalibration, offering a path to safer and more trustworthy AI across domains.
Epistemic Integrity in Large Language Models
Bijean Ghafouri
Shahrad Mohammadzadeh
James Zhou
Pratheeksha Nair
Jacob-Junqi Tian
Mayank Goel
Jean-François Godbout
Kellin Pelrine
Large language models are increasingly relied upon as sources of information, but their propensity for generating false or misleading statem… (see more)ents with high confidence poses risks for users and society. In this paper, we confront the critical problem of epistemic miscalibration—where a model's linguistic assertiveness fails to reflect its true internal certainty. We introduce a new human-labeled dataset and a novel method for measuring the linguistic assertiveness of Large Language Models which cuts error rates by over 50% relative to previous benchmarks. Validated across multiple datasets, our method reveals a stark misalignment between how confidently models linguistically present information and their actual accuracy. Further human evaluations confirm the severity of this miscalibration. This evidence underscores the urgent risk of the overstated certainty Large Language Models hold which may mislead users on a massive scale. Our framework provides a crucial step forward in diagnosing and correcting this miscalibration, offering a path to safer and more trustworthy AI across domains.
Hallucination Detox: Sensitive Neuron Dropout (SeND) for Large Language Model Training
Shahrad Mohammadzadeh
Juan David Guerra
As large language models (LLMs) become increasingly deployed across various industries, concerns regarding their reliability, particularly d… (see more)ue to hallucinations-outputs that are factually inaccurate or irrelevant to user input-have grown. Our research investigates the relationship between the training process and the emergence of hallucinations to address a key gap in existing research that focuses primarily on post hoc detection and mitigation strategies. Using models from the Pythia suite (70M-12B parameters) and several hallucination detection metrics, we analyze hallucination trends throughout training and explore LLM internal dynamics. We introduce SEnsitive Neuron Dropout (SeND), a novel training protocol designed to mitigate hallucinations by reducing variance during training. SeND achieves this by deterministically dropping neurons with significant variability on a dataset, referred to as Sensitive Neurons. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore in 2x speed. This efficient metric is integrated into our protocol, allowing SeND to be both computationally scalable and effective at reducing hallucinations. Our empirical evaluation demonstrates that our approach improves LLM reliability at test time by up to 40% compared to normal training while also providing an efficient method to improve factual accuracy when adapting LLMs to domains such as Wikipedia and Medical datasets.
Identifying and Addressing Delusions for Target-Directed Decision-Making
Harry Zhao
Mingde Zhao
Tristan Sylvain
We are interested in target-directed agents, which produce targets during decision-time planning, to guide their behaviors and achieve bette… (see more)r generalization during evaluation. Improper training of these agents can result in delusions: the agent may come to hold false beliefs about the targets, which cannot be properly rejected, leading to unwanted behaviors and damaging out-of-distribution generalization. We identify different types of delusions by using intuitive examples in carefully controlled environments, and investigate their causes. We demonstrate how delusions can be addressed for agents trained by hindsight relabeling, a mainstream approach in for training target-directed RL agents. We validate empirically the effectiveness of the proposed solutions in correcting delusional behaviors and improving out-of-distribution generalization.
Quantifying Likeness: A Simple Machine Learning Approach to Identifying Copyright Infringement in (AI-Generated) Artwork
Michaela Drouillard
Ryan Spencer
Nikée Nantambu-Allen
Through study of legal precedent, we propose a pragmatic way to quantify copyright infringement, via stylistic similarity, in AI-generated a… (see more)rtwork. Copyright infringement by AI systems is a topic of rapidly-increasing importance as generative AI becomes more widespread and commercial. In contrast to typical work in this field, more in line with a realistic legal setting, our approach quantifies similarity of a set of potentially-infringing "defendant" artworks to a set of copyrighted "plaintiff" artworks. We develop our approach by making use of one of the most litigated artistic creations of this century -- Mickey Mouse. We curate a dataset using Mickey as the plaintiff, and perform hyperparameter search, scaling, and robustness analyses with various defendent artworks from real legal cases to find settings that generalize well. We operationalize similarity via a simple discrimintative task which can be accomplished in a low-resource setting by non-experts -- our aim is to provide a `plug and play' method that is feasible for artists and/or legal experts to use with their own plaintiff sets of artworks. We further demonstrate the viability of our approach by quantifying similarity in a second curated dataset of Maria Prymachenko's art vs. AI-generated images. We conclude by discussing uses of our work in both legal and other settings, including provision of artist compensation.
Simulation System Towards Solving Societal-Scale Manipulation
Maximilian Puelma Touzel
Sneheel Sarangi
Austin Welch
Gayatri K
Dan Zhao
Zachary Yang
Hao Yu
Tom Gibbs
Ethan Kosak-Hine
Andreea Musulan
Camille Thibault
Busra Tugce Gurbuz
Jean-François Godbout
Kellin Pelrine
The rise of AI-driven manipulation poses significant risks to societal trust and democratic processes. Yet, studying these effects in real-w… (see more)orld settings at scale is ethically and logistically impractical, highlighting a need for simulation tools that can model these dynamics in controlled settings to enable experimentation with possible defenses. We present a simulation environment designed to address this. We elaborate upon the Concordia framework that simulates offline, `real life' activity by adding online interactions to the simulation through social media with the integration of a Mastodon server. Through a variety of means we then improve simulation efficiency and information flow, and add a set of measurement tools, particularly longitudinal surveys of the agents' political positions. We demonstrate the simulator with a tailored example of how partisan manipulation of agents can affect election results.