Evaluating Numeracy of Language Models as a Natural Language Inference Task.
Rahmad Mahendra
Damiano Spina
Lawrence J. Cavedon
Karin Verspoor
Zhangir Azerbayev
Hailey Schoelkopf
Keiran Paster
Marco Dos Santos
Stephen Marcus McAleer
Al-bert Q. Jiang
Jia Deng
Stella Biderman
Sean Welleck. 2024
Llemma
Taylor Berg-Kirkpatrick
Daniel Spokoyny. 2020
Samuel R. Bowman
Gabor Angeli
Christopher Potts
Christopher D. Manning. 2015 … (see 480 more)
Tom Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
Sandhini Agarwal
Ariel Herbert-Voss
Gretchen Krueger
T. Henighan
Rewon Child
Aditya Ramesh
Daniel M. Ziegler
Jeffrey Wu
Clemens Winter
Chris Hesse
Mark Chen
Eric Sigler
Ma-teusz Litwin
Scott Gray
Benjamin Chess
J. Clark
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei. 2020
Samuel Cahyawijaya
Holy Lovenia
Alham Fikri Aji
Genta Indra Winata
Bryan Wilie
Fajri Koto
Christian Wibisono
Ade Romadhony
Karissa Vincentio
Jennifer Santoso
David Moel-jadi
Cahya Wirawan
Frederikus Hudi
Muham-mad Satrio Wicaksono
Ivan Halim Parmonangan
Ika Al-fina
Ilham Firdausi Putra
Samsul Rahmadani
Yulianti Oenang
Ali Akbar Septiandri
James Jaya
Kaustubh Dhole
Arie Suryani
Rifki Afina
Dan Putri
Keith Su
Made Nindyatama Stevens
Muhammad Nityasya
Ryan Adilazuarda
R. Hadiwijaya
Diandaru Tiezheng
Vito Yu
Wenliang Ghifari
Yan Dai
Xu Dyah
Haryo Damapuspita
Cuk Wibowo
Ich-wanul Tho
Karo Karo
T. Fatyanosa
Ziwei Ji
Graham Neubig
Timothy Baldwin
Zheng Cai
Maosong Cao
Haojiong Chen
Kai Chen
Keyu Chen
Xin Chen
Xun Chen
Ze-yu Chen
Zhi Chen
Pei Chu
Xiaoyi Dong
Haodong Duan
Qi Fan
Zhaoye Fei
Yan Gao
Jiaye Ge
Chenya Gu
Yuzhe Gu
Tao Gui
Aijia Guo
Qipeng Guo
Conghui He
Yingfan Hu
Ting Huang
T. Jiang
Penglong Jiao
Hongwei Liu
Jiangning Liu
Jiawei Hong
Kaiwen Liu
Kuikun Liu
Xiaoran Liu
Chen Lv
Haijun Lv
Kai Lv 0001
Li Ma
Runyuan Ma
Zerun Ma
Wenchang Ning
Linke Ouyang
Jiantao Qiu
Yuan Qu
Fukai Shang
Yunfan Shao
Hyung Won
Le Hou
Shayne Longpre
Barret Zoph
Yi Tay
William Fedus
Yunxuan Li
Xuezhi Wang
Mostafa Dehghani
Siddhartha Brahma
Alex Webson
Shixiang Shane
Zhuyun Gu
M. Dai
Xinyun Suzgun
Aakanksha Chen
Alex Chowdhery
Marie Castro-Ros
Kevin Pellat
Dasha Robinson
Sharan Valter
Gaurav Narang
Adams Mishra
Y. YuVincent
Yanping Zhao
Andrew Huang
Dai
Kevin Clark
Minh-Thang Luong
Quoc V. Le
Christopher D. Manning. 2020
Electra
Karl Cobbe
Vineet Kosaraju
Mo Bavarian
Heewoo Jun
Lukasz Kaiser
Matthias Plappert
Jerry Tworek
Jacob Hilton
Reiichiro Nakano
Xiao Bi
Deli Chen
Guanting Chen
Shanhuang Chen
Damai Dai
Cheng Deng
Honghui Ding
Kai Dong
Qiushi Du
Zhe Fu
Huazuo Gao
Kaige Gao
Wenjun Gao
Ruiqi Ge
Kang Guan
Daya Guo
Jianzhong Guo
Guangbo Hao
Zhewen Hao
Ying He
Panpan Wenjie Hu
Didem Foss
Dingkang Wang
Duc Le
Dustin Hol-land
Edward Dowling
Eissa Jamil
Elaine Mont-gomery
Eleonora Presani
Emily Hahn
Emily Wood
Erik Brinkman
Esteban Arcaute
Evan Dunbar
Evan Smothers
Fei Sun
Felix Kreuk
Feng Tian
Firat Ozgenel
Francesco Caggioni
F. Guzm’an
Frank J. Kanayet
Frank Seide
Gabriela Medina Florez
Gabriella Schwarz
Gada Badeer
Georgia Swee
Gil Halpern
G. Thattai
Grant Herman
G. Sizov
Guangyi Zhang
Guna Lakshmi-narayanan
Hamid Shojanazeri
Han Zou
Hannah Wang
Han Zha
Haroun Habeeb
Harrison Rudolph
Helen Suk
Henry Aspegren
Hunter Goldman
Igor Molybog
Igor Tufanov
Irina-Elena Veliche
Itai Gat
Jake Weissman
James Geboski
James Kohli
Japhet Asher
Jean-Baptiste Gaya
Jeff Marcus
Jeff Tang
Jennifer Chan
Jenny Zhen
Jeremy Reizen-stein
J. Teboul
Jessica Zhong
Jian Jin
Jingyi Yang
Joe Cummings
Jon Carvill
Jon Shepard
J. McPhie
Jonathan Torres
Josh Ginsburg
Junjie Wang
Kai Wu
U. KamHou
Karan Saxena
Karthik Prasad
Kartikay Khandelwal
Katayoun Zand
Kathy Matosich
Kaushik Veeraragha-van
Kelly Michelena
Keqian Li
Kun Huang
Kushal Chawla
Kushal Lakhotia
Kyle Huang
Lailin Chen
Lakshya Garg
A. Lavender
Leandro Silva
Lee Bell
Lei Zhang
Liangpeng Guo
Licheng Yu
Liron Moshkovich
Luca Wehrstedt
Madian Khabsa
Manav Avalani
Manish Bhatt
Maria Tsim-poukelli
Martynas Mankus
Matan Hasson
Matthias Lennie
Matthias Reso
Maxim Groshev
Maxim Naumov
Maya Lathi
Meghan Keneally
Michal Seltzer
Michal Valko
Michelle Restrepo
Mihir Patel
Mik Vyatskov
Mikayel Samvelyan
Mike Clark
Mike Macey
Mike Wang
Miquel Jubert
Mo Metanat
Mohammad Rastegari
Munish Bansal
Nandhini Santhanam
Natascha Parks
Natasha White
Navyata Bawa
Nayan Singhal
Nick Egebo
Nicolas Usunier
Nikolay Pavlovich
Laptev Ning
Ning Dong
Norman Zhang
Oleg Cheng
Olivia Chernoguz
Omkar Hart
Ozlem Salpekar
Parkin Kalinli
Parth Kent
Paul Parekh
Pa-van Saab
Pedro Balaji
Philip Rittner
Pierre Bontrager
Piotr Roux
Polina Dollár
P. Zvyagina
Pritish Yuvraj
Qian Liang
Rachad Alao
Rachel Rodriguez
Rafi Ayub
Raghotham Murthy
Raghu Nayani
Rahul Mitra
Raymond Li
Rebekkah Hogan
Robin Battey
Rocky Wang
Rohan Mah-eswari
Russell Howes
Ruty Rinott
Sai Jayesh
Bondu Samyak
Sara Datta
Sara Chugh
Sargun Hunt
Sasha Dhillon
Satadru Sidorov
Saurabh Pan
Verma Seiji
Sharadh Yamamoto
Shaun Ramaswamy
Sheng Lind-say
Sheng Feng
Shengxin Cindy Lin
Shiva Zha
Shuqiang Shankar
Sinong Zhang
Wang Sneha
Soji Agarwal
Soumith Sajuyigbe
Chintala Stephanie
Stephen Max
Steve Chen
Steve Kehoe
Sudarshan Satterfield
S. Govindaprasad
Gupta Sung-Bae
Sunny Cho
Suraj Virk
Subramanian Sy
Sy Choudhury
Tal Goldman
T. Remez
Tamara Glaser
Thilo Best
Thomas Kohler
Tianhe Robinson
Tianjun Li
Tim Zhang
Tim Matthews
Tzook Chou
Varun Shaked
Victoria Vontimitta
Victoria Ajayi
Vijai Montanez
Vinay Satish Mohan
Vishal Kumar
Vlad Mangla
Ionescu
Vlad Andrei
V. Poenaru
Vlad T. Mihailescu
Wei Ivanov
Wenchen Li
Wen-wen Wang
Wes Jiang
Bouaziz
Yilin Zhang
Ying Zhang
Yossi Adi
Youngjin Nam
Yu Wang
Yuchen Hao
Yundi Qian
Yuzi He
Zach Rait
Zachary DeVito
Zef Rosnbrick
Zhaoduo Wen
Zhenyu Yang
Zhiwei Zhao. 2024
The Llama
Gemma Team
Thomas Mesnard
Cassidy Hardin
Robert Dadashi
Surya Bhupatiraju
Shreya Pathak
L. Sifre
Morgane Rivière
Mihir Kale
Pouya Christo-pher Love
Dehghani Tafti
L'eonard Hussenot
Aakanksha Chowdhery
Adam Roberts
Aditya Barua
Alex Botev
Alex Castro-Ros
Ambrose Slone
Amélie Héliou
A. Tacchetti
Anna Bulanova
Antonia Paterson
Beth Tsai
Bobak Shahriari
Le Lan
Christopher A. Choquette-Choo
Clé-ment Crepy
Daniel Matthew Cer
Daphne Ippolito
David Reid
Elena Buchatskaya
Eric Ni
Eric Noland
Geng Yan
George Tucker
George-Christian Muraru
Grigory Rozhdestvenskiy
Henryk Michalewski
Ian Ten-ney
Ivan Grishchenko
Jacob Austin
James Keel-ing
Jane Labanowski
Jean-Baptiste Lespiau
Jeff Stanway
Jenny Brennan
Jeremy Chen
Johan Fer-ret
Justin Chiu
Justin Mao-jones
Kather-ine Lee
Kathy Yu
Katie Millican
Lars Lowe Sjoesund
Lisa Lee
Lucas Dixon
Machel Reid
Maciej Mikuła
Mateo Wirth
Michael Sharman
Nikolai Chinaev
Nithum Thain
Olivier Bachem
Oscar Chang
O. Wahltinez
Paige Bailey
Paul Michel
Petko Yotov Pier
Giuseppe Sessa
Rahma Chaabouni
Ramona Comanescu
Reena Jana
Rohan Anil
Generalization Limits of Graph Neural Networks in Identity Effects Learning
Giuseppe Alessio D’Inverno
Simone Brugiapaglia
Graph Neural Networks (GNNs) have emerged as a powerful tool for data-driven learning on various graph domains. They are usually based on a … (see more)message-passing mechanism and have gained increasing popularity for their intuitive formulation, which is closely linked to the Weisfeiler-Lehman (WL) test for graph isomorphism to which they have been proven equivalent in terms of expressive power. In this work, we establish new generalization properties and fundamental limits of GNNs in the context of learning so-called identity effects, i.e., the task of determining whether an object is composed of two identical components or not. Our study is motivated by the need to understand the capabilities of GNNs when performing simple cognitive tasks, with potential applications in computational linguistics and chemistry. We analyze two case studies: (i) two-letters words, for which we show that GNNs trained via stochastic gradient descent are unable to generalize to unseen letters when utilizing orthogonal encodings like one-hot representations; (ii) dicyclic graphs, i.e., graphs composed of two cycles, for which we present positive existence results leveraging the connection between GNNs and the WL test. Our theoretical analysis is supported by an extensive numerical study.
Generating Complex Question Decompositions in the Face of Distribution Shifts.
Kelvin Han
Claire Gardent
Marah Ihab Abdin
Jyoti Aneja
Hany Hassan Awadalla
Ammar Ahmed Awadallah
Ahmad Awan
Nguyen Bach
Amit Bahree
Arash Bakhtiari
Jianmin Bao
Harkirat Singh Behl
Alon Benhaim
Misha Bilenko
Johan Bjorck
Sébastien Bubeck
Martin Cai
Qin Cai
Vishrav Chaudhary
Dong Chen … (see 342 more)
Weizhu Chen
Yen-Chun Chen 0001
Yi-ling Chen
Hao Cheng
Parul Chopra
Xiyang Dai
Matthew Dixon
Ronen Eldan
Victor Fragoso
Jianfeng Gao
Mei Gao
Min Gao
Amit Garg
Allison Del Giorno
Abhishek Goswami
S. Gunasekar
Emman Haider
Jun-heng Hao
Russell J. Hewett
Wen-Wei Hu
Jamie Huynh
Dan Iter
Sam Ade Jacobs
Mojan Javaheripi
Xin Jin
Nikos Karampatziakis
Piero Kauffmann
Mahoud Khademi
Dongwoo Kim
Young Jin Kim
Lev Kurilenko
James R. Lee
Yin Tat Lee
Yuanzhi Li
Yunsheng Li
Chen Liang
Lars Lidén
Xihui
Zeqi Lin
Ce Lin
Liyuan Liu
Mengchen Liu
Liu Weishung
Xiaodong Liu
Chong Liu
Piyush Luo
Ali Madan
David Mahmoudzadeh
Matt Majercak
Caio Mazzola
César Teodoro
Arindam Mendes
Hardik Mitra
Anh Modi
Brandon Nguyen
Norick Barun
Daniel Patra
Thomas Perez-Becker
Portet Reid
Heyang Pryzant
Marko Qin
Liliang Radmilac
Gustavo Ren
Corby de Rosa
Sambudha Rosset
Roy Olatunji
Olli Ruwase
Amin Saarikivi
Adil Saied
Michael Salim
Shital Santacroce
Ning Shah
Shang Hiteshi
Yelong Sharma
Swadheen Shen
Xia Shukla
Masahiro Song
Andrea Tanaka
Praneetha Tupini
Michael Wu
Bin Wyatt
Can Xiao
Jiahang Xu
Weijiang Xu
Jilong Xu
Sonali Xue
Fan Yadav
Jianwei Yang
Yifan Yang
Ziyi Yang
Donghan Yang
Yu Lu
Chenruidong Yuan
Cyril Zhang
Jianwen Zhang
Zhang
Li Lyna
Yi Zhang
Yue Zhang
Yunan Zhang 0001
Zhang Xiren
Zhou
Phi-3
Priyanka Agrawal
Chris Alberti
Fantine Huot
Joshua Maynez
Ji Ma
Kuzman Ganchev
Viraat Aryabumi
John Dang
Dwarak Talupuru
Saurabh Dash
David Cairuz
Hangyu Lin
Bharat Venkitesh
Madeline Smith
Jon Ander Campos
Yi Chern Tan
Kelly Marchisio
Max Bartolo
Sebastian Ruder
Acyr F. Locatelli
Julia Kreutzer
Nick Frosst
Aidan Gomez
Phil Blunsom
Marzieh Fadaee
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
Sandhini Agarwal
Ariel Herbert-Voss
Gretchen Krueger
T. Henighan
Rewon Child
Aditya Ramesh
Daniel M. Ziegler
Jeffrey Wu
Clemens Winter
Chris Hesse
Mark Chen
Eric Sigler
Ma-teusz Litwin
Scott Gray
Benjamin Chess
J. Clark
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei Gemma Team
Morgane Rivière
Shreya Pathak Pier
Giuseppe Sessa
Cassidy Hardin
Surya Bhupati-raju
L'eonard Hussenot
Thomas Mesnard
Bobak Shahriari
Alexandre Ramé
Johan Ferret
Peter Liu
Pouya Dehghani Tafti
Abe Friesen
Michelle Casbon
Sabela Ramos
Ravin Kumar
Charline Le Lan
Sammy Jerome
Anton Tsitsulin
Nino Vieillard
Piotr Stańczyk
Sertan Girgin
Nikola Momchev
Matt Hoffman
Shantanu Thakoor
Jean-Bastien Grill
Behnam Neyshabur
Olivier Bachem
Alanna Wal-ton
Aliaksei Severyn
Alicia Parrish
Aliya Ah-mad
Allen Hutchison
Alvin Abdagic
Amanda Carl
Amy Shen
Andy Brock
Andy Coenen
Anthony Laforge
Antonia Paterson
Ben Bastian
Bilal Piot
Boxi Wu
Brandon Royal
Charlie Chen
Chintu Kumar
Chris Perry
Christoper A. Welty
Christopher A. Choquette-Choo
Danila Sinopalnikov
David Wein-berger
Dimple Vijaykumar
Dominika Rogozi´nska
D. Herbison
Elisa Bandy
Emma Wang
Eric Noland
Erica Moreira
Evan Senter
Evgenii Elty-shev
Francesco Visin
Gabriel Rasskin
Gary Wei
Glenn Cameron
Gus Martins
Hadi Hashemi
Hanna Klimczak-Pluci´nska
Harleen Batra
Harsh Dhand
Ivan Nardini
Jacinda Mein
Jack Zhou
James Svens-son
Jeff Stanway
Jetha Chan
J. Zhou
Joana Carrasqueira
Joana Iljazi
Jocelyn Becker
Joe Fer-nandez
Joost Van Amersfoort
Josh Gordon
Josh Lipschultz
Joshua Newlan
Junsong Ji
Kareem Mo-hamed
Kartikeya Badola
Kat Black
Katie Mil-lican
Keelin McDonell
Kelvin Nguyen
Kiranbir Sodhia
Kish Greene
Lars Lowe Sjoesund
Lauren Usui
Laurent Sifre
L. Heuermann
Leti-cia Lago
Lilly McNealus
Livio Baldini
Soares Logan
Lucas Kilpatrick
Luciano Dixon
Martins Machel
Manvinder Reid
Mark Singh
Martin Görner Iverson
Mateo Wirth Mat Velloso
Matt Davi-dow
Matt Miller
Matthew Rahtz
Matthew Watson
Meg Risdal
Mehran Kazemi
Michael Moynihan
Ming Zhang
Minsuk Kahng
Minwoo Park
Mofi Rahman
Mohit Khatwani
Natalie Dao
Nenshad Bardoliwalla
N. Devanathan
Neta Dumai
Nilay Chauhan
O. Wahltinez
Pankil Botarda
Parker Barnes
Paul R. Barham
Paul Michel
Peng-chong Jin
Petko Georgiev
Phil Culliton
Pradeep Kup-pala
Ramona Comanescu
Ramona Merhej
Reena Jana
R. Rokni
Ryan Mullins
Samaneh Saadat
S. M. Carthy
Sarah Cogan
Sarah Perrin
S'ebastien M. R. Arnold
Se-bastian Krause
Shengyang Dai
S. Garg
Shruti Sheth
S. Ronstrom
Susan Chan
Timothy Jordan
Ting Yu
Tom Eccles
Tom Hennigan
Tomas Kocisky
Tulsee Doshi
Vihan Jain
Vikas Yadav
Vilobh Meshram
Vishal Dharmadhikari
Warren Barkley
Wei Wei
Wenming Ye
Woohyun Han
Woosuk Kwon
Xiang Xu
Zhe Shen
Zhitao Gong
Zichuan Wei
Victor Cotruta
Phoebe Kirk
Anand Rao
Minh Giang
Ludovic Peran
Tris Brian Warkentin
Eli Collins
Joelle Barral
Zoubin Ghahramani
Raia Hadsell
D. Sculley
Jeanine Banks
Anca Dragan
Graph Anomaly Detection in Time Series: A Survey.
Thi Kieu Khanh Ho
Ali Karami
Hadamard product in deep learning: Introduction, Advances and Challenges.
Grigorios G Chrysos
Yongtao Wu
Philip Torr
Volkan Cevher
ICLR 2025 Workshop on Tackling Climate Change with Machine Learning: Data-Centric Approaches in ML for Climate Action
Konstantin Klemmer
Melissa Chapman
Lily Xu
Poon Kin Ho
Mélisande Teng
Patrick Emami
Climate change is one of the greatest problems society has ever faced, with increasingly severe consequences for humanity as natural disaste… (see more)rs multiply, sea levels rise, and ecosystems falter. While no silver bullet, machine learning can be an invaluable tool in fighting climate change via a wide array of applications and techniques, from designing smart electric grids to tracking greenhouse gas emissions through satellite imagery. These applications require algorithmic innovations in machine learning and close collaboration with diverse fields and practitioners. This workshop is intended as a forum for those in the global machine learning community who wish to help tackle climate change, and is further aimed to help foster cross-pollination between researchers in machine learning and experts in complementary climate-relevant fields. Building on our past workshops on this topic, this workshop particularly aims to explore data-centric ML approaches for climate action. Data-centric ML is not only a timely topic within the ICLR community, as analyzing and engineering (pre)training datasets becomes increasingly important, but holds specific challenges and opportunities in climate-related areas. We also want to take the opportunity of ICLR being hosted in Singapore to engage with local communities and shine a light on work that deploys, analyzes or critiques ML methods and their use for climate change adaptation and mitigation on the Asian continent.
An identification of models to help in the design of national strategies and policies to reduce greenhouse gas emissions.
Danielle Maia de Souza
Radhwane Boukelouha
Catherine Morency
Normand Mousseau
Martin Trépanier
An identification of models to help in the design of national strategies and policies to reduce greenhouse gas emissions.
Danielle Maia de Souza
Radhwane Boukelouha
Catherine Morency
Normand Mousseau
Martin Trépanier
Inference-Aware Fine-Tuning for Best-of-N Sampling in Large Language Models
Yinlam Chow
Guy Tennenholtz
Izzeddin Gur
Vincent Zhuang
Bo Dai
Sridhar Thiagarajan
Craig Boutilier
Aviral Kumar
Aleksandra Faust
Recent studies have indicated that effectively utilizing inference-time compute is crucial for attaining better performance from large langu… (see more)age models (LLMs). In this work, we propose a novel inference-aware fine-tuning paradigm, in which the model is fine-tuned in a manner that directly optimizes the performance of the inference-time strategy. We study this paradigm using the simple yet effective Best-of-N (BoN) inference strategy, in which a verifier selects the best out of a set of LLM-generated responses. We devise the first imitation learning and reinforcement learning~(RL) methods for BoN-aware fine-tuning, overcoming the challenging, non-differentiable argmax operator within BoN. We empirically demonstrate that our BoN-aware models implicitly learn a meta-strategy that interleaves best responses with more diverse responses that might be better suited to a test-time input -- a process reminiscent of the exploration-exploitation trade-off in RL. Our experiments demonstrate the effectiveness of BoN-aware fine-tuning in terms of improved performance and inference-time compute. In particular, we show that our methods improve the Bo32 performance of Gemma 2B on Hendrycks MATH from 26.8% to 30.8%, and pass@32 from 60.0% to 67.0%, as well as the pass@16 on HumanEval from 61.6% to 67.1%.
Integer Programming Games.
Gabriele Dragotto
Andrea Lodi
Sriram Sankaranarayanan 0002
Integer Programming Games.
Gabriele Dragotto
Andrea Lodi 0001
Sriram Sankaranarayanan 0002
Integrating Generative and Experimental Platforms for Biomolecular Design
Cheng-Hao Liu
Jarrid Rector-Brooks
Soojung Yang
Sidney L Lisanza
Francesca-Zhoufan Li
Hannes Stärk
Jacob Gershon
Lauren Hong
Pranam Chatterjee
Tommi Jaakkola
Regina Barzilay
David Baker
Frances H. Arnold
Biomolecular design, through artificial engineering of proteins, ligands, and nucleic acids, holds immense promise in addressing pressing me… (see more)dical, industrial, and environmental challenges. While generative machine learning has shown significant potential in this area, a palpable disconnect exists with experimental biology: many ML research efforts prioritize static benchmark performance, potentially sidelining impactful biological applications. This workshop seeks to bridge this gap by bringing computationalists and experimentalists together, catalyzing a deeper interdisciplinary discourse. Together, we will explore the strengths and challenges of generative ML in biology, experimental integration of generative ML, and biological problems ready for ML. To attract high-quality and diverse research, we partnered with Nature Biotechnology for a special collection, and we created dedicated tracks for in-silico ML research and hybrid ML-experimental biology research. Our lineup features emerging leaders as speakers and renowned scientists as panelists, encapsulating a spectrum from high-throughput experimentation and computational biology to generative ML. With a diverse organizing team and backed by industry sponsors, we dedicate the workshop to pushing the boundaries of ML's role in biology.