How Do the Open Source Communities Address Usability and UX Issues?: An Exploratory Study
Jinghui Cheng
Usability and user experience (UX) issues are often not well emphasized and addressed in open source software (OSS) development. There is an… (see more) imperative need for supporting OSS communities to collaboratively identify, understand, and fix UX design issues in a distributed environment. In this paper, we provide an initial step towards this effort and report on an exploratory study that investigated how the OSS communities currently reported, discussed, negotiated, and eventually addressed usability and UX issues. We conducted in-depth qualitative analysis of selected issue tracking threads from three OSS projects hosted on GitHub. Our findings indicated that discussions about usability and UX issues in OSS communities were largely influenced by the personal opinions and experiences of the participants. Moreover, the characteristics of the community may have greatly affected the focus of such discussion.
Minimization of Graph Weighted Models over Circular Strings
Towards End-to-end Spoken Language Understanding
Dmitriy Serdyuk
Yongqiang Wang
Christian Fuegen
Anuj Kumar
Baiyang Liu
Spoken language understanding system is traditionally designed as a pipeline of a number of components. First, the audio signal is processed… (see more) by an automatic speech recognizer for transcription or n-best hypotheses. With the recognition results, a natural language understanding system classifies the text to structured data as domain, intent and slots for down-streaming consumers, such as dialog system, hands-free applications. These components are usually developed and optimized independently. In this paper, we present our study on an end-to-end learning system for spoken language understanding. With this unified approach, we can infer the semantic meaning directly from audio features without the intermediate text representation. This study showed that the trained model can achieve reasonable good result and demonstrated that the model can capture the semantic attention directly from the audio features.
Frank-Wolfe Splitting via Augmented Lagrangian Method
Minimizing a function over an intersection of convex sets is an important task in optimization that is often much more challenging than mini… (see more)mizing it over each individual constraint set. While traditional methods such as Frank-Wolfe (FW) or proximal gradient descent assume access to a linear or quadratic oracle on the intersection, splitting techniques take advantage of the structure of each sets, and only require access to the oracle on the individual constraints. In this work, we develop and analyze the Frank-Wolfe Augmented Lagrangian (FW-AL) algorithm, a method for minimizing a smooth function over convex compact sets related by a "linear consistency" constraint that only requires access to a linear minimization oracle over the individual constraints. It is based on the Augmented Lagrangian Method (ALM), also known as Method of Multipliers, but unlike most existing splitting methods, it only requires access to linear (instead of quadratic) minimization oracles. We use recent advances in the analysis of Frank-Wolfe and the alternating direction method of multipliers algorithms to prove a sublinear convergence rate for FW-AL over general convex compact sets and a linear convergence rate for polytopes.
Nonlinear Weighted Finite Automata
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent succ… (see more)esses of nonlinear models in machine learning, it is natural to wonder whether extending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinear WFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFA and relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
Fisher Pruning of Deep Nets for Facial Trait Classification
Qing Tian
James J. Clark
Although deep nets have resulted in high accuracies for various visual tasks, their computational and space requirements are prohibitively h… (see more)igh for inclusion on devices without high-end GPUs. In this paper, we introduce a neuron/filter level pruning framework based on Fisher's LDA which leads to high accuracies for a wide array of facial trait classification tasks, while significantly reducing space/computational complexities. The approach is general and can be applied to convolutional, fully-connected, and module-based deep structures, in all cases leveraging the high decorrelation of neuron activations found in the pre-decision layer and cross-layer deconv dependency. Experimental results on binary and multi-category facial traits from the LFWA and Adience datasets illustrate the framework's comparable/better performance to state-of-the-art pruning approaches and compact structures (e.g. SqueezeNet, MobileNet). Ours successfully maintains comparable accuracies even after discarding most parameters (98%-99% for VGG-16, 82% for GoogLeNet) and with significant FLOP reductions (83% for VGG-16, 64% for GoogLeNet).
Task-specific Deep LDA pruning of neural networks
Qing Tian
James J. Clark
With deep learning's success, a limited number of popular deep nets have been widely adopted for various vision tasks. However, this usually… (see more) results in unnecessarily high complexities and possibly many features of low task utility. In this paper, we address this problem by introducing a task-dependent deep pruning framework based on Fisher's Linear Discriminant Analysis (LDA). The approach can be applied to convolutional, fully-connected, and module-based deep network structures, in all cases leveraging the high decorrelation of neuron motifs found in the pre-decision layer and cross-layer deconv dependency. Moreover, we examine our approach's potential in network architecture search for specific tasks and analyze the influence of our pruning on model robustness to noises and adversarial attacks. Experimental results on datasets of generic objects, as well as domain specific tasks (CIFAR100, Adience, and LFWA) illustrate our framework's superior performance over state-of-the-art pruning approaches and fixed compact nets (e.g. SqueezeNet, MobileNet). The proposed method successfully maintains comparable accuracies even after discarding most parameters (98%-99% for VGG16, up to 82% for the already compact InceptionNet) and with significant FLOP reductions (83% for VGG16, up to 64% for InceptionNet). Through pruning, we can also derive smaller, but more accurate and more robust models suitable for the task.
Generating Contradictory, Neutral, and Entailing Sentences
Yikang Shen
Shawn Tan
Chin-Wei Huang
Learning distributed sentence representations remains an interesting problem in the field of Natural Language Processing (NLP). We want to l… (see more)earn a model that approximates the conditional latent space over the representations of a logical antecedent of the given statement. In our paper, we propose an approach to generating sentences, conditioned on an input sentence and a logical inference label. We do this by modeling the different possibilities for the output sentence as a distribution over the latent representation, which we train using an adversarial objective. We evaluate the model using two state-of-the-art models for the Recognizing Textual Entailment (RTE) task, and measure the BLEU scores against the actual sentences as a probe for the diversity of sentences produced by our model. The experiment results show that, given our framework, we have clear ways to improve the quality and diversity of generated sentences.
A polynomial algorithm for a continuous bilevel knapsack problem
Andrea Lodi
Patrice Marcotte
Learning Anonymized Representations with Adversarial Neural Networks
Clément Feutry
P. Duhamel
Statistical methods protecting sensitive information or the identity of the data owner have become critical to ensure privacy of individuals… (see more) as well as of organizations. This paper investigates anonymization methods based on representation learning and deep neural networks, and motivated by novel information theoretical bounds. We introduce a novel training objective for simultaneously training a predictor over target variables of interest (the regular labels) while preventing an intermediate representation to be predictive of the private labels. The architecture is based on three sub-networks: one going from input to representation, one from representation to predicted regular labels, and one from representation to predicted private labels. The training procedure aims at learning representations that preserve the relevant part of the information (about regular labels) while dismissing information about the private labels which correspond to the identity of a person. We demonstrate the success of this approach for two distinct classification versus anonymization tasks (handwritten digits and sentiment analysis).
Generalization in Machine Learning via Analytical Learning Theory
Kenji Kawaguchi
This paper introduces a novel measure-theoretic theory for machine learning that does not require statistical assumptions. Based on this the… (see more)ory, a new regularization method in deep learning is derived and shown to outperform previous methods in CIFAR-10, CIFAR-100, and SVHN. Moreover, the proposed theory provides a theoretical basis for a family of practically successful regularization methods in deep learning. We discuss several consequences of our results on one-shot learning, representation learning, deep learning, and curriculum learning. Unlike statistical learning theory, the proposed learning theory analyzes each problem instance individually via measure theory, rather than a set of problem instances via statistics. As a result, it provides different types of results and insights when compared to statistical learning theory.
Towards Understanding Generalization via Analytical Learning Theory
Kenji Kawaguchi
This paper introduces a novel measure-theoretic theory for machine learning that does not require statistical assumptions. Based on this the… (see more)ory, a new regularization method in deep learning is derived and shown to outperform previous methods in CIFAR-10, CIFAR-100, and SVHN. Moreover, the proposed theory provides a theoretical basis for a family of practically successful regularization methods in deep learning. We discuss several consequences of our results on one-shot learning, representation learning, deep learning, and curriculum learning. Unlike statistical learning theory, the proposed learning theory analyzes each problem instance individually via measure theory, rather than a set of problem instances via statistics. As a result, it provides different types of results and insights when compared to statistical learning theory.