A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Constituents are groups of words that behave as a syntactic unit. Many linguistic phenomena (e.g., question formation, diathesis alternation… (see more)s) require the manipulation and rearrangement of constituents in a sentence. In this paper, we investigate how different finetuning setups affect the ability of pretrained sequence-to-sequence language models such as BART and T5 to replicate constituency tests — transformations that involve manipulating constituents in a sentence. We design multiple evaluation settings by varying the combinations of constituency tests and sentence types that a model is exposed to during finetuning. We show that models can replicate a linguistic transformation on a specific type of sentence that they saw during finetuning, but performance degrades substantially in other settings, showing a lack of systematic generalization. These results suggest that models often learn to manipulate sentences at a surface level unrelated to the constituent-level syntactic structure, for example by copying the first word of a sentence. These results may partially explain the brittleness of pretrained language models in downstream tasks.
2023-12-01
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP (published)
Abstract In this paper, we propose LexSub, a novel approach towards unifying lexical and distributional semantics. We inject knowledge about… (see more) lexical-semantic relations into distributional word embeddings by defining subspaces of the distributional vector space in which a lexical relation should hold. Our framework can handle symmetric attract and repel relations (e.g., synonymy and antonymy, respectively), as well as asymmetric relations (e.g., hypernymy and meronomy). In a suite of intrinsic benchmarks, we show that our model outperforms previous approaches on relatedness tasks and on hypernymy classification and detection, while being competitive on word similarity tasks. It also outperforms previous systems on extrinsic classification tasks that benefit from exploiting lexical relational cues. We perform a series of analyses to understand the behaviors of our model.1 Code available at https://github.com/aishikchakraborty/LexSub.
2020-12-01
Transactions of the Association for Computational Linguistics (published)