Publications

Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale
Priyan Vaithilingam
Frida-Cecilia Acosta-Parenteau
Daniel Lee
Amine Mhedhbi
Elena L. Glassman
BindGPT: A Scalable Framework for 3D Molecular Design via Language Modeling and Reinforcement Learning
Maksim Kuznetsov
Roman Schutski
Shayakhmetov Rim
Daniil Polykovskiy
Alex Zhavoronkov
Generating novel active molecules for a given protein is an extremely challenging task for generative models that requires an understanding … (see more)of the complex physical interactions between the molecule and its environment. In this paper, we present a novel generative model, BindGPT which uses a conceptually simple but powerful approach to create 3D molecules within the protein's binding site. Our model produces molecular graphs and conformations jointly, eliminating the need for an extra graph reconstruction step. We pretrain BindGPT on a large-scale dataset and fine-tune it with reinforcement learning using scores from external simulation software. We demonstrate how a single pretrained language model can serve at the same time as a 3D molecular generative model, conformer generator conditioned on the molecular graph, and a pocket-conditioned 3D molecule generator. Notably, the model does not make any representational equivariance assumptions about the domain of generation. We show how such simple conceptual approach combined with pretraining and scaling can perform on par or better than the current best specialized diffusion models, language models, and graph neural networks while being two orders of magnitude cheaper to sample.
FoMo: Multi-Modal, Multi-Scale and Multi-Task Remote Sensing Foundation Models for Forest Monitoring
Nikolaos Ioannis Bountos
Ioannis Papoutsis
Genetic modulation of brain dynamics in neurodevelopmental disorders: the impact of copy number variations on resting-state EEG
Adrien Dubois
Elisabeth Audet-Duchesne
Inga Sophia Knoth
Charles-Olivier Martin
Khadije Jizi
Petra Tamer
Nadine Younis
Sébastien Jacquemont
Sarah Lippé
A Layer Selection Approach to Test Time Adaptation
Mostafa ElAraby
Yann Batiste Pequignot
Frederic Precioso
Test Time Adaptation (TTA) addresses the problem of distribution shift by adapting a pretrained model to a new domain during inference. When… (see more) faced with challenging shifts, most methods collapse and perform worse than the original pretrained model. In this paper, we find that not all layers are equally receptive to the adaptation, and the layers with the most misaligned gradients often cause performance degradation. To address this, we propose GALA, a novel layer selection criterion to identify the most beneficial updates to perform during test time adaptation. This criterion can also filter out unreliable samples with noisy gradients. Its simplicity allows seamless integration with existing TTA loss functions, thereby preventing degradation and focusing adaptation on the most trainable layers. This approach also helps to regularize adaptation to preserve the pretrained features, which are crucial for handling unseen domains. Through extensive experiments, we demonstrate that the proposed layer selection framework improves the performance of existing TTA approaches across multiple datasets, domain shifts, model architectures, and TTA losses.
StarVector: Generating Scalable Vector Graphics Code from Images and Text
Juan A. Rodriguez
Abhay Puri
Issam Hadj Laradji
Pau Rodriguez
Sai Rajeswar
David Vazquez
AgentAda: Skill-Adaptive Data Analytics for Tailored Insight Discovery
Amirhossein Abaskohi
Amrutha Varshini Ramesh
Shailesh Nanisetty
David Vazquez
Giuseppe Carenini
Issam Hadj Laradji
Min-Max Optimisation for Nonconvex-Nonconcave Functions Using a Random Zeroth-Order Extragradient Algorithm
Amir Ali Farzin
Yuen-Man Pun
Philipp Braun
Youssef Diouane
Iman Shames
Burst firing optimizes invariant coding of natural communication signals by electrosensory neural populations
Michael G. Metzen
Amin Akhshi
Anmar Khadra
Maurice J. Chacron
Leveraging Machine Learning Techniques in Intrusion Detection Systems for Internet of Things
Saeid Jamshidi
Amin Nikanjam
Nafi Kawser Wazed
Lugha-Llama: Adapting Large Language Models for African Languages
Happy Buzaaba
Alexander Wettig
Christiane Fellbaum
Alignment of auditory artificial networks with massive individual fMRI brain data leads to generalisable improvements in brain encoding and downstream tasks
Maelle Freteault
Loic Tetrel
Nicolas Farrugia
Artificial neural networks trained in the field of artificial intelligence (AI) have emerged as key tools to model brain processes, sparking… (see more) the idea of aligning network representations with brain dynamics to enhance performance on AI tasks. While this concept has gained support in the visual domain, we investigate here the feasibility of creating auditory artificial neural models directly aligned with individual brain activity. This objective raises major computational challenges, as models have to be trained directly with brain data, which is typically collected at a much smaller scale than data used to train AI models. We aimed to answer two key questions: (1) Can brain alignment of auditory models lead to improved brain encoding for novel, previously unseen stimuli? (2) Can brain alignment lead to generalisable representations of auditory signals that are useful for solving a variety of complex auditory tasks? To answer these questions, we relied on two massive datasets: a deep phenotyping dataset from the Courtois neuronal modelling project, where six subjects watched four seasons (36 hours) of the Friends TV series in functional magnetic resonance imaging and the HEAR benchmark, a large battery of downstream auditory tasks. We fine-tuned SoundNet, a small pretrained convolutional neural network with ∼2.5M parameters. Aligning SoundNet with brain data from three seasons of Friends led to substantial improvement in brain encoding in the fourth season, extending beyond auditory and visual cortices. We also observed consistent performance gains on the HEAR benchmark, particularly for tasks with limited training data, where brain-aligned models performed comparably to the best-performing models regardless of size. We finally compared individual and group models, finding that individual models often matched or outperformed group models in both brain encoding and downstream task performance, highlighting the data efficiency of fine-tuning with individual brain data. Our results demonstrate the feasibility of aligning artificial neural network representations with individual brain activity during auditory processing, and suggest that this alignment is particularly beneficial for tasks with limited training data. Future research is needed to establish whether larger models can achieve even better performance and whether the observed gains extend to other tasks, particularly in the context of few shot learning.