Structure Learning for Neural Module Networks
Vardaan Pahuja
Jie Fu
Neural Module Networks, originally proposed for the task of visual question answering, are a class of neural network architectures that invo… (see more)lve human-specified neural modules, each designed for a specific form of reasoning. In current formulations of such networks only the parameters of the neural modules and/or the order of their execution is learned. In this work, we further expand this approach and also learn the underlying internal structure of modules in terms of the ordering and combination of simple and elementary arithmetic operators. We utilize a minimum amount of prior knowledge from the human-specified neural modules in the form of different input types and arithmetic operators used in these modules. Our results show that one is indeed able to simultaneously learn both internal module structure and module sequencing without extra supervisory signals for module execution sequencing. With this approach, we report performance comparable to models using hand-designed modules. In addition, we do a analysis of sensitivity of the learned modules w.r.t. the arithmetic operations and infer the analytical expressions of the learned modules.
Fluoroquinolone Use and Seasonal Patterns of Ciprofloxacin Resistance in Community-Acquired Urinary Escherichia coli Infection in a Large Urban Center
Jean-Paul R Soucy
Alexandra M. Schmidt
Caroline Quach
Ordered Memory
Yikang Shen
Shawn Tan
Seyedarian Hosseini
Zhouhan Lin
Ordered Memory
Yikang Shen
Shawn Tan
Seyedarian Hosseini
Zhouhan Lin
A deep learning framework for neuroscience
Timothy P. Lillicrap
Philippe Beaudoin
Rafal Bogacz
Amelia Christensen
Claudia Clopath
Rui Ponte Costa
Archy de Berker
Surya Ganguli
Colleen J Gillon
Danijar Hafner
Adam Kepecs
Nikolaus Kriegeskorte
Peter Latham
Grace W. Lindsay
Kenneth D. Miller
Richard Naud
Christopher C. Pack
Panayiota Poirazi … (see 12 more)
Pieter Roelfsema
João Sacramento
Andrew Saxe
Benjamin Scellier
Anna C. Schapiro
Walter Senn
Greg Wayne
Daniel Yamins
Friedemann Zenke
Joel Zylberberg
Denis Therien
Konrad Paul Kording
Collegiality as political work: Professions in today’s world of organizations
Jean-Louis Denis
Gianluca Veronesi
Sabrina Germain
Collegiality is frequently portrayed as an inherent characteristic of professions, associated with normative expectations autonomously deter… (see more)mined and regulated among peers. However, in advanced modernity other modes of governance responding to societal expectations and increasing state reliance on professional expertise often appear in tension with conditions of collegiality. This article argues that collegiality is not an immutable and inherent characteristic of the governance of professional work and organizations; rather, it is the result of the ability of a profession to operationalize the normative, relational, and structural requirements of collegiality at work. This article builds on different streams of scholarship to present a dynamic approach to collegiality based on political work by professionals to protect, maintain, and reformulate collegiality as a core set of principles governing work. Productive resistance and co-production are explored for their contribution to collegiality in this context, enabling accommodation between professions and organizations to achieve collective objectives and serving as a vector of change and adaptation of professional work in contemporary organizations. Engagement in co-production influences the ability to materialize collegiality at work, just as the maintenance and transformation of collegiality will operate in a context where professions participate and negotiate compromises with others legitimate modes of governance. Our arguments build on recent studies and hypotheses concerning the interface of professions and organizations to reveal the political work that underlies the affirmation and re-affirmation of collegiality as a mode of governance of work based on resistance and co-production.
Icentia11K: An Unsupervised Representation Learning Dataset for Arrhythmia Subtype Discovery
Shawn Tan
Guillaume Androz
Ahmad Chamseddine
Pierre Fecteau
Joseph Paul Cohen
We release the largest public ECG dataset of continuous raw signals for representation learning containing 11 thousand patients and 2 billio… (see more)n labelled beats. Our goal is to enable semi-supervised ECG models to be made as well as to discover unknown subtypes of arrhythmia and anomalous ECG signal events. To this end, we propose an unsupervised representation learning task, evaluated in a semi-supervised fashion. We provide a set of baselines for different feature extractors that can be built upon. Additionally, we perform qualitative evaluations on results from PCA embeddings, where we identify some clustering of known subtypes indicating the potential for representation learning in arrhythmia sub-type discovery.
Retrieving Signals with Deep Complex Extractors
Chiheb Trabelsi
Olexa Bilaniuk
Ousmane Dia
Ying Zhang
Jonathan Binas
Recent advances have made it possible to create deep complex-valued neural networks. Despite this progress, many challenging learning tasks … (see more)have yet to leverage the power of complex representations. Building on recent advances, we propose a new deep complex-valued method for signal retrieval and extraction in the frequency domain. As a case study, we perform audio source separation in the Fourier domain. Our new method takes advantage of the convolution theorem which states that the Fourier transform of two convolved signals is the elementwise product of their Fourier transforms. Our novel method is based on a complex-valued version of Feature-Wise Linear Modulation (FiLM) and serves as the keystone of our proposed signal extraction method. We also introduce a new and explicit amplitude and phase-aware loss, which is scale and time invariant, taking into account the complex-valued components of the spectrogram. Using the Wall Street Journal Dataset, we compared our phase-aware loss to several others that operate both in the time and frequency domains and demonstrate the effectiveness of our proposed signal extraction method and proposed loss.
Continual Learning of New Sound Classes Using Generative Replay
Zhepei Wang
Efthymios Tzinis
Paris Smaragdis
Continual learning consists in incrementally training a model on a sequence of datasets and testing on the union of all datasets. In this pa… (see more)per, we examine continual learning for the problem of sound classification, in which we wish to refine already trained models to learn new sound classes. In practice one does not want to maintain all past training data and retrain from scratch, but naively updating a model with new data(sets) results in a degradation of already learned tasks, which is referred to as "catastrophic forgetting." We develop a generative replay procedure for generating training audio spectrogram data, in place of keeping older training datasets. We show that by incrementally refining a classifier with generative replay a generator that is 4% of the size of all previous training data matches the performance of refining the classifier keeping 20% of all previous training data. We thus conclude that we can extend a trained sound classifier to learn new classes without having to keep previously used datasets.
Predicting ice flow using machine learning
Yimeng Min
S. Karthik Mukkavilli
Though machine learning has achieved notable success in modeling sequential and spatial data for speech recognition and in computer vision, … (see more)applications to remote sensing and climate science problems are seldom considered. In this paper, we demonstrate techniques from unsupervised learning of future video frame prediction, to increase the accuracy of ice flow tracking in multi-spectral satellite images. As the volume of cryosphere data increases in coming years, this is an interesting and important opportunity for machine learning to address a global challenge for climate change, risk management from floods, and conserving freshwater resources. Future frame prediction of ice melt and tracking the optical flow of ice dynamics presents modeling difficulties, due to uncertainties in global temperature increase, changing precipitation patterns, occlusion from cloud cover, rapid melting and glacier retreat due to black carbon aerosol deposition, from wildfires or human fossil emissions. We show the adversarial learning method helps improve the accuracy of tracking the optical flow of ice dynamics compared to existing methods in climate science. We present a dataset, IceNet, to encourage machine learning research and to help facilitate further applications in the areas of cryospheric science and climate change.
Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inference
Raghav Mehta
Thomas Christinck
Tanya Nair
Aurélie Bussy
Paul Lemaitre
Swapna Premasiri
Douglas Arnold
Manuela Costantino
Mallar Chakravarty
Yarin Gal
Although deep networks have been shown to perform very well on a variety of medical imaging tasks, inference in the presence of pathology pr… (see more)esents several challenges to common models. These challenges impede the integration of deep learning models into real clinical workflows, where the customary process of cascading deterministic outputs from a sequence of image-based inference steps (e.g. registration, segmentation) generally leads to an accumulation of errors that impacts the accuracy of downstream inference tasks. In this paper, we propose that by embedding uncertainty estimates across cascaded inference tasks, performance on the downstream inference tasks should be improved. We demonstrate the effectiveness of the proposed approach in three different clinical contexts: (i) We demonstrate that by propagating T2 weighted lesion segmentation results and their associated uncertainties, subsequent T2 lesion detection performance is improved when evaluated on a proprietary large-scale, multi-site, clinical trial dataset acquired from patients with Multiple Sclerosis. (ii) We show an improvement in brain tumour segmentation performance when the uncertainty map associated with a synthesised missing MR volume is provided as an additional input to a follow-up brain tumour segmentation network, when evaluated on the publicly available BraTS-2018 dataset. (iii) We show that by propagating uncertainties from a voxel-level hippocampus segmentation task, the subsequent regression of the Alzheimer’s disease clinical score is improved.
Saliency Based Deep Neural Network for Automatic Detection of Gadolinium-Enhancing Multiple Sclerosis Lesions in Brain MRI
Joshua D. Durso-Finley
Douglas Arnold