We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Precision, Equity, and Public Health and Epidemiology Informatics – A Scoping Review
An online reinforcement learning algorithm called renewal Monte Carlo (RMC) is presented. RMC works for infinite horizon Markov decision pro… (see more)cesses with a designated start state. RMC is a Monte Carlo algorithm that retains the key advantages of Monte Carlo—viz., simplicity, ease of implementation, and low bias—while circumventing the main drawbacks of Monte Carlo—viz., high variance and delayed updates. Given a parameterized policy
2020-08-01
IEEE Transactions on Automatic Control (published)
Introduction The need to streamline patient management for coronavirus disease-19 (COVID-19) has become more pressing than ever. Chest X-ray… (see more)s (CXRs) provide a non-invasive (potentially bedside) tool to monitor the progression of the disease. In this study, we present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images. Such a tool can gauge the severity of COVID-19 lung infections (and pneumonia in general) that can be used for escalation or de-escalation of care as well as monitoring treatment efficacy, especially in the ICU. Methods Images from a public COVID-19 database were scored retrospectively by three blinded experts in terms of the extent of lung involvement as well as the degree of opacity. A neural network model that was pre-trained on large (non-COVID-19) chest X-ray datasets is used to construct features for COVID-19 images which are predictive for our task. Results This study finds that training a regression model on a subset of the outputs from this pre-trained chest X-ray model predicts our geographic extent score (range 0-8) with 1.14 mean absolute error (MAE) and our lung opacity score (range 0-6) with 0.78 MAE. Conclusions These results indicate that our model’s ability to gauge the severity of COVID-19 lung infections could be used for escalation or de-escalation of care as well as monitoring treatment efficacy, especially in the ICU. To enable follow up work, we make our code, labels, and data available online.
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 p… (see more)resents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 p… (see more)resents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
In recent years, the multi-armed bandit (MAB) framework has attracted a lot of attention in various applications, from recommender systems a… (see more)nd information retrieval to healthcare and finance. This success is due to its stellar performance combined with attractive properties, such as learning from less feedback. The multiarmed bandit field is currently experiencing a renaissance, as novel problem settings and algorithms motivated by various practical applications are being introduced, building on top of the classical bandit problem. This article aims to provide a comprehensive review of top recent developments in multiple real-life applications of the multi-armed bandit. Specifically, we introduce a taxonomy of common MAB-based applications and summarize the state-of-the-art for each of those domains. Furthermore, we identify important current trends and provide new perspectives pertaining to the future of this burgeoning field.
2020-07-19
2020 IEEE Congress on Evolutionary Computation (CEC) (published)
A fundamental task in data exploration is to extract simplified low dimensional representations that capture intrinsic geometry in data, esp… (see more)ecially for faithfully visualizing data in two or three dimensions. Common approaches to this task use kernel methods for manifold learning. However, these methods typically only provide an embedding of fixed input data and cannot extend to new data points. Autoencoders have also recently become popular for representation learning. But while they naturally compute feature extractors that are both extendable to new data and invertible (i.e., reconstructing original features from latent representation), they have limited capabilities to follow global intrinsic geometry compared to kernel-based manifold learning. We present a new method for integrating both approaches by incorporating a geometric regularization term in the bottleneck of the autoencoder. Our regularization, based on the diffusion potential distances from the recently-proposed PHATE visualization method, encourages the learned latent representation to follow intrinsic data geometry, similar to manifold learning algorithms, while still enabling faithful extension to new data and reconstruction of data in the original feature space from latent coordinates. We compare our approach with leading kernel methods and autoencoder models for manifold learning to provide qualitative and quantitative evidence of our advantages in preserving intrinsic structure, out of sample extension, and reconstruction. Our method is easily implemented for big-data applications, whereas other methods are limited in this regard.