Symptom network analysis of the sleep disorders diagnostic criteria based on the clinical text of the ICSD‐3
Christophe Gauld
Régis Lopez
Charles Morin
Pierre A. GEOFFROY
Julien Maquet
Pierre Desvergnes
Aileen McGonigal
Yves Dauvilliers
Pierre Philip
Jean‐Arthur Micoulaud‐Franchi
Trips and neurotransmitters: Discovering principled patterns across 6850 hallucinogenic experiences
Galen Ballentine
Samuel Freesun Friedman
Design of Hesitation Gestures for Nonverbal Human-Robot Negotiation of Conflicts
Maneezhay Hashmi
H. F. Machiel Van Der Loos
Elizabeth A. Croft
Aude Billard
When the question of who should get access to a communal resource first is uncertain, people often negotiate via nonverbal communication to … (see more)resolve the conflict. What should a robot be programmed to do when such conflicts arise in Human-Robot Interaction? The answer to this question varies depending on the context of the situation. Learning from how humans use hesitation gestures to negotiate a solution in such conflict situations, we present a human-inspired design of nonverbal hesitation gestures that can be used for Human-Robot Negotiation. We extracted characteristic features of such negotiative hesitations humans use, and subsequently designed a trajectory generator (Negotiative Hesitation Generator) that can re-create the features in robot responses to conflicts. Our human-subjects experiment demonstrates the efficacy of the designed robot behaviour against non-negotiative stopping behaviour of a robot. With positive results from our human-robot interaction experiment, we provide a validated trajectory generator with which one can explore the dynamics of human-robot nonverbal negotiation of resource conflicts.
TIE: A Framework for Embedding-based Incremental Temporal Knowledge Graph Completion
Jiapeng Wu
Yishi Xu
Yingxue Zhang
Chen Ma
Reasoning in a temporal knowledge graph (TKG) is a critical task for information retrieval and semantic search. It is particularly challengi… (see more)ng when the TKG is updated frequently. The model has to adapt to changes in the TKG for efficient training and inference while preserving its performance on historical knowledge. Recent work approaches TKG completion (TKGC) by augmenting the encoder-decoder framework with a time-aware encoding function. However, naively fine-tuning the model at every time step using these methods does not address the problems of 1) catastrophic forgetting, 2) the model's inability to identify the change of facts (e.g., the change of the political affiliation and end of a marriage), and 3) the lack of training efficiency. To address these challenges, we present the Time-aware Incremental Embedding (TIE) framework, which combines TKG representation learning, experience replay, and temporal regularization. We introduce a set of metrics that characterizes the intransigence of the model and propose a constraint that associates the deleted facts with negative labels. Experimental results on Wikidata12k and YAGO11k datasets demonstrate that the proposed TIE framework reduces training time by about ten times and improves on the proposed metrics compared to vanilla full-batch training. It comes without a significant loss in performance for any traditional measures. Extensive ablation studies reveal performance trade-offs among different evaluation metrics, which is essential for decision-making around real-world TKG applications.
Parallel and Recurrent Cascade Models as a Unifying Force for Understanding Subcellular Computation
Emerson F. Harkin
Peter R. Shen
Anisha Goel
Richard Naud
Neurons are very complicated computational devices, incorporating numerous non-linear processes, particularly in their dendrites. Biophysica… (see more)l models capture these processes directly by explicitly modelling physiological variables, such as ion channels, current flow, membrane capacitance, etc. However, another option for capturing the complexities of real neural computation is to use cascade models, which treat individual neurons as a cascade of linear and non-linear operations, akin to a multi-layer artificial neural network. Recent research has shown that cascade models can capture single-cell computation well, but there are still a number of sub-cellular, regenerative dendritic phenomena that they cannot capture, such as the interaction between sodium, calcium, and NMDA spikes in different compartments. Here, we propose that it is possible to capture these additional phenomena using parallel, recurrent cascade models, wherein an individual neuron is modelled as a cascade of parallel linear and non-linear operations that can be connected recurrently, akin to a multi-layer, recurrent, artificial neural network. Given their tractable mathematical structure, we show that neuron models expressed in terms of parallel recurrent cascades can themselves be integrated into multi-layered artificial neural networks and trained to perform complex tasks. We go on to discuss potential implications and uses of these models for artificial intelligence. Overall, we argue that parallel, recurrent cascade models provide an important, unifying tool for capturing single-cell computation and exploring the algorithmic implications of physiological phenomena.
Parallel and Recurrent Cascade Models as a Unifying Force for Understanding Subcellular Computation
Emerson F. Harkin
Peter R. Shen
Anisha Goel
Richard Naud
Neurons are very complicated computational devices, incorporating numerous non-linear processes, particularly in their dendrites. Biophysica… (see more)l models capture these processes directly by explicitly modelling physiological variables, such as ion channels, current flow, membrane capacitance, etc. However, another option for capturing the complexities of real neural computation is to use cascade models, which treat individual neurons as a cascade of linear and non-linear operations, akin to a multi-layer artificial neural network. Recent research has shown that cascade models can capture single-cell computation well, but there are still a number of sub-cellular, regenerative dendritic phenomena that they cannot capture, such as the interaction between sodium, calcium, and NMDA spikes in different compartments. Here, we propose that it is possible to capture these additional phenomena using parallel, recurrent cascade models, wherein an individual neuron is modelled as a cascade of parallel linear and non-linear operations that can be connected recurrently, akin to a multi-layer, recurrent, artificial neural network. Given their tractable mathematical structure, we show that neuron models expressed in terms of parallel recurrent cascades can themselves be integrated into multi-layered artificial neural networks and trained to perform complex tasks. We go on to discuss potential implications and uses of these models for artificial intelligence. Overall, we argue that parallel, recurrent cascade models provide an important, unifying tool for capturing single-cell computation and exploring the algorithmic implications of physiological phenomena.
The default mode network in cognition: a topographical perspective
Jonathan Smallwood
Boris C Bernhardt
Robert Leech
Elizabeth Jefferies
Daniel S. Margulies
Beyond variance reduction: Understanding the true impact of baselines on policy optimization
Wesley Chung
Valentin Thomas
Marlos C. Machado
Continuous Coordination As a Realistic Scenario for Lifelong Learning
Hadi Nekoei
Akilesh Badrinaaraayanan
Current deep reinforcement learning (RL) algorithms are still highly task-specific and lack the ability to generalize to new environments. L… (see more)ifelong learning (LLL), however, aims at solving multiple tasks sequentially by efficiently transferring and using knowledge between tasks. Despite a surge of interest in lifelong RL in recent years, the lack of a realistic testbed makes robust evaluation of LLL algorithms difficult. Multi-agent RL (MARL), on the other hand, can be seen as a natural scenario for lifelong RL due to its inherent non-stationarity, since the agents' policies change over time. In this work, we introduce a multi-agent lifelong learning testbed that supports both zero-shot and few-shot settings. Our setup is based on Hanabi -- a partially-observable, fully cooperative multi-agent game that has been shown to be challenging for zero-shot coordination. Its large strategy space makes it a desirable environment for lifelong RL tasks. We evaluate several recent MARL methods, and benchmark state-of-the-art LLL algorithms in limited memory and computation regimes to shed light on their strengths and weaknesses. This continual learning paradigm also provides us with a pragmatic way of going beyond centralized training which is the most commonly used training protocol in MARL. We empirically show that the agents trained in our setup are able to coordinate well with unseen agents, without any additional assumptions made by previous works. The code and all pre-trained models are available at https://github.com/chandar-lab/Lifelong-Hanabi.
A Deep Reinforcement Learning Approach to Marginalized Importance Sampling with the Successor Representation
Scott Fujimoto
Marginalized importance sampling (MIS), which measures the density ratio between the state-action occupancy of a target policy and that of a… (see more) sampling distribution, is a promising approach for off-policy evaluation. However, current state-of-the-art MIS methods rely on complex optimization tricks and succeed mostly on simple toy problems. We bridge the gap between MIS and deep reinforcement learning by observing that the density ratio can be computed from the successor representation of the target policy. The successor representation can be trained through deep reinforcement learning methodology and decouples the reward optimization from the dynamics of the environment, making the resulting algorithm stable and applicable to high-dimensional domains. We evaluate the empirical performance of our approach on a variety of challenging Atari and MuJoCo environments.
Directional Graph Networks
Saro Passaro
Vincent Létourneau
William L. Hamilton
Gabriele Corso
Pietro Lio
The lack of anisotropic kernels in graph neural networks (GNNs) strongly limits their expressiveness, contributing to well-known issues such… (see more) as over-smoothing. To overcome this limitation, we propose the first globally consistent anisotropic kernels for GNNs, allowing for graph convolutions that are defined according to topologicaly-derived directional flows. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then, we propose the use of the Laplacian eigenvectors as such vector field. We show that the method generalizes CNNs on an
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming
Minkai Xu
Wujie Wang
Shitong Luo
Chence Shi
Rafael G'omez-bombarelli
Predicting molecular conformations (or 3D structures) from molecular graphs is a fundamental problem in many applications. Most existing app… (see more)roaches are usually divided into two steps by first predicting the distances between atoms and then generating a 3D structure through optimizing a distance geometry problem. However, the distances predicted with such two-stage approaches may not be able to consistently preserve the geometry of local atomic neighborhoods, making the generated structures unsatisfying. In this paper, we propose an end-to-end solution for molecular conformation prediction called ConfVAE based on the conditional variational autoencoder framework. Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program. Extensive experiments on several benchmark data sets prove the effectiveness of our proposed approach over existing state-of-the-art approaches. Code is available at https://github.com/MinkaiXu/ConfVAE-ICML21.