A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Massive Extremely High-Velocity Outflow in the Quasar J164653.72+243942.2
Federated learning enables collaborative model training across numerous edge devices without requiring participants to share data; however, … (see more)memory and communication constraints on these edge devices may preclude their participation in training. We consider a setting in which a subset of edge devices are below a critical memory or communication threshold required to conduct model updates. Under typical federated optimization algorithms, these devices are excluded from training which renders their data inaccessible and increases system induced bias. We are inspired by MeZO, a zeroth-order method used for memory-efficient fine-tuning. The increased variance inherent to zeroth-order gradient approximations has relegated previous zeroth-order optimizers exclusively to the domain of fine tuning; a limitation we seek to correct. We devise a federated, memory-efficient zeroth-order optimizer, ZOWarmUp that permits zeroth-order training from a random initialization. ZOWarmUp leverages differing client capabilities and careful variance reduction techniques to facilitate participation of under-represented, low-resource clients in model training. Like other federated zeroth-order methods, ZOWarmUp eliminates the need for edge devices to transmit their full gradients to the server and instead relies on only a small set of random seeds, rendering the up-link communication cost negligible. We present experiments using various datasets and model architectures to show that ZOWarmUp is a robust algorithm that can can be applied under a wide variety of circumstances. For systems with a high proportion of edge devices that would otherwise be excluded from training, this algorithm provides access to a greater volume and diversity of data, thus improving training outcomes.
We describe a publicly available multimodal dataset of annotated Positron Emission Tomography/Computed Tomography (PET/CT) studies for head … (see more)and neck cancer research. The dataset includes 1123 FDG-PET/CT studies from patients with histologically confirmed head and neck cancer, acquired from 10 international medical centers. All examinations consisted of co-registered PET/CT scans with varying acquisition protocols, reflecting real-world clinical diversity across institutions. Primary gross tumor volumes (GTVp) and involved lymph nodes (GTVn) were manually segmented by experienced radiation oncologists and radiologists following standardized guidelines and quality control measures. We provide anonymized NifTi files of all studies, along with expert-annotated segmentation masks, radiotherapy dose distribution for a subset of patients, and comprehensive clinical metadata. This metadata includes TNM staging, HPV status, demographics (age and gender), long-term follow-up outcomes, survival times, censoring indicators, and treatment information. We demonstrate how this dataset can be used for three key clinical tasks: automated tumor segmentation, recurrence-free survival prediction, and HPV status classification, providing benchmark results using state-of-the-art deep learning models, including UNet, SegResNet, and multimodal prognostic frameworks.
We describe a publicly available multimodal dataset of annotated Positron Emission Tomography/Computed Tomography (PET/CT) studies for head … (see more)and neck cancer research. The dataset includes 1123 FDG-PET/CT studies from patients with histologically confirmed head and neck cancer, acquired from 10 international medical centers. All examinations consisted of co-registered PET/CT scans with varying acquisition protocols, reflecting real-world clinical diversity across institutions. Primary gross tumor volumes (GTVp) and involved lymph nodes (GTVn) were manually segmented by experienced radiation oncologists and radiologists following standardized guidelines and quality control measures. We provide anonymized NifTi files of all studies, along with expert-annotated segmentation masks, radiotherapy dose distribution for a subset of patients, and comprehensive clinical metadata. This metadata includes TNM staging, HPV status, demographics (age and gender), long-term follow-up outcomes, survival times, censoring indicators, and treatment information. We demonstrate how this dataset can be used for three key clinical tasks: automated tumor segmentation, recurrence-free survival prediction, and HPV status classification, providing benchmark results using state-of-the-art deep learning models, including UNet, SegResNet, and multimodal prognostic frameworks.
Hierarchical reinforcement learning (RL) has the potential to enable effective decision-making over long timescales. Existing approaches, wh… (see more)ile promising, have yet to realize the benefits of large-scale training. In this work, we identify and solve several key challenges in scaling hierarchical RL to high-throughput environments. We propose Scalable Option Learning (SOL), a highly scalable hierarchical RL algorithm which achieves a 25x higher throughput compared to existing hierarchical methods. We train our hierarchical agents using 20 billion frames of experience on the complex game of NetHack, significantly surpassing flat agents and demonstrating positive scaling trends. We also validate our algorithm on MiniHack and Mujoco environments, showcasing its general applicability. Our code is open sourced at github.com/facebookresearch/sol.