Publications

Learning Multi-Task Communication with Message Passing for Sequence Learning
Pengfei Liu
Jie Fu
Yue Dong
Xipeng Qiu
We present two architectures for multi-task learning with neural sequence models. Our approach allows the relationships between different ta… (see more)sks to be learned dynamically, rather than using an ad-hoc pre-defined structure as in previous work. We adopt the idea from message-passing graph neural networks, and propose a general graph multi-task learning framework in which different tasks can communicate with each other in an effective and interpretable way. We conduct extensive experiments in text classification and sequence labelling to evaluate our approach on multi-task learning and transfer learning. The empirical results show that our models not only outperform competitive baselines, but also learn interpretable and transferable patterns across tasks.
Learning Options with Interest Functions
Learning temporal abstractions which are partial solutions to a task and could be reused for solving other tasks is an ingredient that can h… (see more)elp agents to plan and learn efficiently. In this work, we tackle this problem in the options framework. We aim to autonomously learn options which are specialized in different state space regions by proposing a notion of interest functions, which generalizes initiation sets from the options framework for function approximation. We build on the option-critic framework to derive policy gradient theorems for interest functions, leading to a new interest-option-critic architecture.
Leveraging Observations in Bandits: Between Risks and Benefits
Andrei-Stefan Lupu
Imitation learning has been widely used to speed up learning in novice agents, by allowing them to leverage existing data from experts. Allo… (see more)wing an agent to be influenced by external observations can benefit to the learning process, but it also puts the agent at risk of following sub-optimal behaviours. In this paper, we study this problem in the context of bandits. More specifically, we consider that an agent (learner) is interacting with a bandit-style decision task, but can also observe a target policy interacting with the same environment. The learner observes only the target’s actions, not the rewards obtained. We introduce a new bandit optimism modifier that uses conditional optimism contingent on the actions of the target in order to guide the agent’s exploration. We analyze the effect of this modification on the well-known Upper Confidence Bound algorithm by proving that it preserves a regret upper-bound of order O(lnT), even in the presence of a very poor target, and we derive the dependency of the expected regret on the general target policy. We provide empirical results showing both great benefits as well as certain limitations inherent to observational learning in the multi-armed bandit setting. Experiments are conducted using targets satisfying theoretical assumptions with high probability, thus narrowing the gap between theory and application.
Online Adaptative Curriculum Learning for GANs
Thang Doan
Joao Monteiro
Isabela Albuquerque
Bogdan Mazoure
Generative Adversarial Networks (GANs) can successfully approximate a probability distribution and produce realistic samples. However, open … (see more)questions such as sufficient convergence conditions and mode collapse still persist. In this paper, we build on existing work in the area by proposing a novel framework for training the generator against an ensemble of discriminator networks, which can be seen as a one-student/multiple-teachers setting. We formalize this problem within the full-information adversarial bandit framework, where we evaluate the capability of an algorithm to select mixtures of discriminators for providing the generator with feedback during learning. To this end, we propose a reward function which reflects the progress made by the generator and dynamically update the mixture weights allocated to each discriminator. We also draw connections between our algorithm and stochastic optimization methods and then show that existing approaches using multiple discriminators in literature can be recovered from our framework. We argue that less expressive discriminators are smoother and have a general coarse grained view of the modes map, which enforces the generator to cover a wide portion of the data distribution support. On the other hand, highly expressive discriminators ensure samples quality. Finally, experimental results show that our approach improves samples quality and diversity over existing baselines by effectively learning a curriculum. These results also support the claim that weaker discriminators have higher entropy improving modes coverage.
A Cross-Domain Transferable Neural Coherence Model
Peng Xu
H. Saghir
Jin Sung Kang
Teng Long
Avishek Joey Bose
Yanshuai Cao
Coherence is an important aspect of text quality and is crucial for ensuring its readability. One important limitation of existing coherence… (see more) models is that training on one domain does not easily generalize to unseen categories of text. Previous work advocates for generative models for cross-domain generalization, because for discriminative models, the space of incoherent sentence orderings to discriminate against during training is prohibitively large. In this work, we propose a local discriminative neural model with a much smaller negative sampling space that can efficiently learn against incorrect orderings. The proposed coherence model is simple in structure, yet it significantly outperforms previous state-of-art methods on a standard benchmark dataset on the Wall Street Journal corpus, as well as in multiple new challenging settings of transfer to unseen categories of discourse on Wikipedia articles.
EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
Yue Dong
Zichao Li
Mehdi Rezagholizadeh
We present the first sentence simplification model that learns explicit edit operations (ADD, DELETE, and KEEP) via a neural programmer-inte… (see more)rpreter approach. Most current neural sentence simplification systems are variants of sequence-to-sequence models adopted from machine translation. These methods learn to simplify sentences as a byproduct of the fact that they are trained on complex-simple sentence pairs. By contrast, our neural programmer-interpreter is directly trained to predict explicit edit operations on targeted parts of the input sentence, resembling the way that humans perform simplification and revision. Our model outperforms previous state-of-the-art neural sentence simplification models (without external knowledge) by large margins on three benchmark text simplification corpora in terms of SARI (+0.95 WikiLarge, +1.89 WikiSmall, +1.41 Newsela), and is judged by humans to produce overall better and simpler output sentences.
GAIT: A Geometric Approach to Information Theory
Jose Gallego-Posada
Ankit Vani
Max Schwarzer
We advocate the use of a notion of entropy that reflects the relative abundances of the symbols in an alphabet, as well as the similarities … (see more)between them. This concept was originally introduced in theoretical ecology to study the diversity of ecosystems. Based on this notion of entropy, we introduce geometry-aware counterparts for several concepts and theorems in information theory. Notably, our proposed divergence exhibits performance on par with state-of-the-art methods based on the Wasserstein distance, but enjoys a closed-form expression that can be computed efficiently. We demonstrate the versatility of our method via experiments on a broad range of domains: training generative models, computing image barycenters, approximating empirical measures and counting modes.
On the interplay between noise and curvature and its effect on optimization and generalization
Valentin Thomas
Fabian Pedregosa
Bart van Merriënboer
Pierre-Antoine Mangazol
The speed at which one can minimize an expected loss using stochastic methods depends on two properties: the curvature of the loss and the v… (see more)ariance of the gradients. While most previous works focus on one or the other of these properties, we explore how their interaction affects optimization speed. Further, as the ultimate goal is good generalization performance, we clarify how both curvature and noise are relevant to properly estimate the generalization gap. Realizing that the limitations of some existing works stems from a confusion between these matrices, we also clarify the distinction between the Fisher matrix, the Hessian, and the covariance matrix of the gradients.
Information matrices and generalization
Valentin Thomas
Fabian Pedregosa
Bart van Merriënboer
Pierre-Antoine Manzagol
This work revisits the use of information criteria to characterize the generalization of deep learning models. In particular, we empirically… (see more) demonstrate the effectiveness of the Takeuchi information criterion (TIC), an extension of the Akaike information criterion (AIC) for misspecified models, in estimating the generalization gap, shedding light on why quantities such as the number of parameters cannot quantify generalization. The TIC depends on both the Hessian of the loss H and the covariance of the gradients C. By exploring the similarities and differences between these two matrices as well as the Fisher information matrix F, we study the interplay between noise and curvature in deep models. We also address the question of whether C is a reasonable approximation to F, as is commonly assumed.
Information matrices and generalization
Valentin Thomas
Fabian Pedregosa
Bart van Merriënboer
Pierre-Antoine Manzagol
This work revisits the use of information criteria to characterize the generalization of deep learning models. In particular, we empirically… (see more) demonstrate the effectiveness of the Takeuchi information criterion (TIC), an extension of the Akaike information criterion (AIC) for misspecified models, in estimating the generalization gap, shedding light on why quantities such as the number of parameters cannot quantify generalization. The TIC depends on both the Hessian of the loss H and the covariance of the gradients C. By exploring the similarities and differences between these two matrices as well as the Fisher information matrix F, we study the interplay between noise and curvature in deep models. We also address the question of whether C is a reasonable approximation to F, as is commonly assumed.
Anomaly Detection with Joint Representation Learning of Content and Connection
Junhao Wang
Renhao Wang
Aayushi Kulshrestha
Social media sites are becoming a key factor in politics. These platforms are easy to manipulate for the purpose of distorting information s… (see more)pace to confuse and distract voters. Past works to identify disruptive patterns are mostly focused on analyzing the content of tweets. In this study, we jointly embed the information from both user posted content as well as a user's follower network, to detect groups of densely connected users in an unsupervised fashion. We then investigate these dense sub-blocks of users to flag anomalous behavior. In our experiments, we study the tweets related to the upcoming 2019 Canadian Elections, and observe a set of densely-connected users engaging in local politics in different provinces, and exhibiting troll-like behavior.
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural Network Training
William Harvey
Michael Teng
Frank Wood
Hard visual attention is a promising approach to reduce the computational burden of modern computer vision methodologies. However, hard atte… (see more)ntion mechanisms can be difficult and slow to train, which is especially costly for applications like neural architecture search where multiple networks must be trained. We introduce a method to amortise the cost of training by generating an extra supervision signal for a subset of the training data. This supervision is in the form of sequences of ‘good’ locations to attend to for each image. We find that the best method to generate supervision sequences comes from framing hard attention for image classification as a Bayesian optimal experimental design (BOED) problem. From this perspective, the optimal locations to attend to are those which provide the greatest expected reduction in the entropy of the classification distribution. We introduce methodology from the BOED literature to approximate this optimal behaviour and generate ‘near-optimal’ supervision sequences. We then present a hard attention network training objective that makes use of these sequences and show that it allows faster training than prior work. We finally demonstrate the utility of faster hard attention training by incorporating supervision sequences in a neural architecture search, resulting in hard attention architectures which can outperform networks with access to the entire image.