Inferring dynamic regulatory interaction graphs from time series data with perturbations
Dhananjay Bhaskar
Daniel Sumner Magruder
Edward De Brouwer
Matheo Morales
Aarthi Venkat
Frederik Wenkel
MUDiff: Unified Diffusion for Complete Molecule Generation
Chenqing Hua
Sitao Luan
Minkai Xu
Zhitao Ying
Rex Ying
Jie Fu
Stefano Ermon
The evidence mismatch in pediatric surgical practice
Marina Broomfield
Zena Agabani
Elena Guadagno
Robert Baird
Differentiable visual computing for inverse problems and machine learning
Andrew Spielberg
Fangcheng Zhong
Konstantinos Rematas
Krishna Murthy
Cengiz Oztireli
Tzu-Mao Li
From physics to sentience: Deciphering the semantics of the free-energy principle and evaluating its claims: Comment on "Path integrals, particular kinds, and strange things" by Karl Friston et al.
Zahra Sheikhbahaee
Adam Safron
Casper Hesp
Leveraging Function Space Aggregation for Federated Learning at Scale
Nikita Dhawan
Nicole Elyse Mitchell
Zachary Charles
Zachary Garrett
The federated learning paradigm has motivated the development of methods for aggregating multiple client updates into a global server model,… (see more) without sharing client data. Many federated learning algorithms, including the canonical Federated Averaging (FedAvg), take a direct (possibly weighted) average of the client parameter updates, motivated by results in distributed optimization. In this work, we adopt a function space perspective and propose a new algorithm, FedFish, that aggregates local approximations to the functions learned by clients, using an estimate based on their Fisher information. We evaluate FedFish on realistic, large-scale cross-device benchmarks. While the performance of FedAvg can suffer as client models drift further apart, we demonstrate that FedFish is more robust to longer local training. Our evaluation across several settings in image and language benchmarks shows that FedFish outperforms FedAvg as local training epochs increase. Further, FedFish results in global networks that are more amenable to efficient personalization via local fine-tuning on the same or shifted data distributions. For instance, federated pretraining on the C4 dataset, followed by few-shot personalization on Stack Overflow, results in a 7% improvement in next-token prediction by FedFish over FedAvg.
Generalizable Imitation Learning Through Pre-Trained Representations
Wei-Di Chang
Francois Hogan
In this paper we leverage self-supervised vision transformer models and their emergent semantic abilities to improve the generalization abil… (see more)ities of imitation learning policies. We introduce BC-ViT, an imitation learning algorithm that leverages rich DINO pre-trained Visual Transformer (ViT) patch-level embeddings to obtain better generalization when learning through demonstrations. Our learner sees the world by clustering appearance features into semantic concepts, forming stable keypoints that generalize across a wide range of appearance variations and object types. We show that this representation enables generalized behaviour by evaluating imitation learning across a diverse dataset of object manipulation tasks. Our method, data and evaluation approach are made available to facilitate further study of generalization in Imitation Learners.
Adaptive Integration of Categorical and Multi-relational Ontologies with EHR Data for Medical Concept Embedding
Chin Wang Cheong
Kejing Yin
William K. Cheung
Jonathan Poon
AfroBench: How Good are Large Language Models on African Languages?
Jessica Ojo
Kelechi Ogueji
Pontus Stenetorp
AfroBench: How Good are Large Language Models on African Languages?
Jessica Ojo
Kelechi Ogueji
Pontus Stenetorp
A community effort in SARS-CoV-2 drug discovery.
Johannes Schimunek
Philipp Seidl
Katarina Elez
Tim Hempel
Tuan Le
Frank Noé
Simon Olsson
Lluís Raich
Robin Winter
Hatice Gokcan
Filipp Gusev
Evgeny M. Gutkin
Olexandr Isayev
Maria G. Kurnikova
Chamali H. Narangoda
Roman Zubatyuk
Ivan P. Bosko
Konstantin V. Furs
Anna D. Karpenko
Yury V. Kornoushenko … (see 133 more)
Mikita Shuldau
Artsemi Yushkevich
Mohammed B. Benabderrahmane
Patrick Bousquet‐Melou
Ronan Bureau
Beatrice Charton
Bertrand C. Cirou
Gérard Gil
William J. Allen
Suman Sirimulla
Stanley Watowich
Nick Antonopoulos
Nikolaos Epitropakis
Agamemnon Krasoulis
Vassilis Pitsikalis
Stavros Theodorakis
Igor Kozlovskii
Anton Maliutin
Alexander Medvedev
Petr Popov
Mark Zaretckii
Hamid Eghbal‐Zadeh
Christina Halmich
Sepp Hochreiter
Andreas Mayr
Peter Ruch
Michael Widrich
Francois Berenger
Ashutosh Kumar
Yoshihiro Yamanishi
Kam Y. J. Zhang
Moksh J. Jain
Maksym Korablyov
Cheng-Hao Liu
Gilles Marcou
M. Gilles
Enrico Glaab
Kelly Barnsley
Suhasini M. Iyengar
Mary Jo Ondrechen
V. Joachim Haupt
Florian Kaiser
Michael Schroeder
Luisa Pugliese
Simone Albani
Christina Athanasiou
Andrea Beccari
Paolo Carloni
Giulia D'Arrigo
Eleonora Gianquinto
Jonas Goßen
Anton Hanke
Benjamin P. Joseph
Daria B. Kokh
Sandra Kovachka
Candida Manelfi
Goutam Mukherjee
Abraham Muñiz‐Chicharro
Francesco Musiani
Ariane Nunes‐Alves
Giulia Paiardi
Giulia Rossetti
S. Kashif Sadiq
Francesca Spyrakis
Carmine Talarico
Alexandros Tsengenes
Rebecca C. Wade
Conner Copeland
Jeremiah Gaiser
Daniel R. Olson
Amitava Roy
Vishwesh Venkatraman
Travis J. Wheeler
Haribabu Arthanari
Klara Blaschitz
Marco Cespugli
Vedat Durmaz
Konstantin Fackeldey
Patrick D. Fischer
Christoph Gorgulla
Christian Gruber
Karl Gruber
Michael Hetmann
Jamie E. Kinney
Krishna M. Padmanabha Das
Shreya Pandita
Amit Singh
Georg Steinkellner
Guilhem Tesseyre
Gerhard Wagner
Zi‐Fu Wang
Ryan J. Yust
Dmitry S. Druzhilovskiy
Dmitry A. Filimonov
Pavel V. Pogodin
Vladimir Poroikov
Anastassia V. Rudik
Leonid A. Stolbov
Alexander V. Veselovsky
Maria De Rosa
Giada De Simone
Maria R. Gulotta
Jessica Lombino
Nedra Mekni
Ugo Perricone
Arturo Casini
Amanda Embree
D. Benjamin Gordon
David Lei
Katelin Pratt
Christopher A. Voigt
Kuang‐Yu Chen
Yves Jacob
Tim Krischuns
Pierre Lafaye
Agnès Zettor
M. Luis Rodríguez
Kris M. White
Daren Fearon
Frank Von Delft
Martin A. Walsh
Dragos Horvath
Charles L. Brooks
Babak Falsafi
Bryan Ford
Adolfo García‐Sastre
Sang Yup Lee
Nadia Naffakh
Alexandre Varnek
Günter Klambauer
Thomas M. Hermans
The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availabili… (see more)ty of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.
Language Model-In-The-Loop: Data Optimal Approach to Learn-To-Recommend Actions in Text Games
Arjun Vaithilingam Sudhakar
Prasanna Parthasarathi
Janarthanan Rajendran