MagicClay: Sculpting Meshes With Generative Neural Fields
Amir Barda
Vladimir Kim
Amit H. Bermano
Thibault Groueix
The recent developments in neural fields have brought phenomenal capabilities to the field of shape generation, but they lack crucial proper… (see more)ties, such as incremental control - a fundamental requirement for artistic work. Triangular meshes, on the other hand, are the representation of choice for most geometry related tasks, offering efficiency and intuitive control, but do not lend themselves to neural optimization. To support downstream tasks, previous art typically proposes a two-step approach, where first a shape is generated using neural fields, and then a mesh is extracted for further processing. Instead, in this paper we introduce a hybrid approach that maintains both a mesh and a Signed Distance Field (SDF) representations consistently. Using this representation, we introduce MagicClay - an artist friendly tool for sculpting regions of a mesh according to textual prompts while keeping other regions untouched. Our framework carefully and efficiently balances consistency between the representations and regularizations in every step of the shape optimization; Relying on the mesh representation, we show how to render the SDF at higher resolutions and faster. In addition, we employ recent work in differentiable mesh reconstruction to adaptively allocate triangles in the mesh where required, as indicated by the SDF. Using an implemented prototype, we demonstrate superior generated geometry compared to the state-of-the-art, and novel consistent control, allowing sequential prompt-based edits to the same mesh for the first time.
Maximum entropy GFlowNets with soft Q-learning
Maximum flow-based formulation for the optimal location of electric vehicle charging stations
Pierre‐Luc Parent
Miguel F. Anjos
Ribal Atallah
With the increasing effects of climate change, the urgency to step away from fossil fuels is greater than ever before. Electric vehicles (EV… (see more)s) are one way to diminish these effects, but their widespread adoption is often limited by the insufficient availability of charging stations. In this work, our goal is to expand the infrastructure of EV charging stations, in order to provide a better quality of service in terms of user satisfaction (and availability of charging stations). Specifically, our focus is directed towards urban areas. We first propose a model for the assignment of EV charging demand to stations, framing it as a maximum flow problem. This model is the basis for the evaluation of user satisfaction with a given charging infrastructure. Secondly, we incorporate the maximum flow model into a mixed‐integer linear program, where decisions on the opening of new stations and on the expansion of their capacity through additional outlets is accounted for. We showcase our methodology for the city of Montreal, demonstrating the scalability of our approach to handle real‐world scenarios. We conclude that considering both spacial and temporal variations in charging demand is meaningful when solving realistic instances.
McGill NLP Group Submission to the MRL 2024 Shared Task: Ensembling Enhances Effectiveness of Multilingual Small LMs
McGill NLP Group Submission to the MRL 2024 Shared Task: Ensembling Enhances Effectiveness of Multilingual Small LMs
We present our systems for the three tasks and five languages included in the MRL 2024 Shared Task on Multilingual Multi-task Information Re… (see more)trieval: (1) Named Entity Recognition, (2) Free-form Question Answering, and (3) Multiple-choice Question Answering. For each task, we explored the impact of selecting different multilingual language models for fine-tuning across various target languages, and implemented an ensemble system that generates final outputs based on predictions from multiple fine-tuned models. All models are large language models fine-tuned on task-specific data. Our experimental results show that a more balanced dataset would yield better results. However, when training data for certain languages are scarce, fine-tuning on a large amount of English data supplemented by a small amount of “triggering data” in the target language can produce decent results.
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Kacper Kapusniak
Peter Potaptchik
Teodora Reu
Leo Zhang
Alexander Tong
Michael M. Bronstein
Francesco Di Giovanni
Matching objectives underpin the success of modern generative models and rely on constructing conditional paths that transform a source dist… (see more)ribution into a target distribution. Despite being a fundamental building block, conditional paths have been designed principally under the assumption of Euclidean geometry, resulting in straight interpolations. However, this can be particularly restrictive for tasks such as trajectory inference, where straight paths might lie outside the data manifold, thus failing to capture the underlying dynamics giving rise to the observed marginals. In this paper, we propose Metric Flow Matching (MFM), a novel simulation-free framework for conditional flow matching where interpolants are approximate geodesics learned by minimizing the kinetic energy of a data-induced Riemannian metric. This way, the generative model matches vector fields on the data manifold, which corresponds to lower uncertainty and more meaningful interpolations. We prescribe general metrics to instantiate MFM, independent of the task, and test it on a suite of challenging problems including LiDAR navigation, unpaired image translation, and modeling cellular dynamics. We observe that MFM outperforms the Euclidean baselines, particularly achieving SOTA on single-cell trajectory prediction.
Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play
Philippe Marcotte
Joshua Romoff
Gabriel Robert
Mirror Descent Algorithms with Nearly Dimension-Independent Rates for Differentially-Private Stochastic Saddle-Point Problems
Tom'as Gonz'alez
Crist'obal Guzm'an
Mitigating Translationese in Low-resource Languages: The Storyboard Approach
Garry Kuwanto
Eno-Abasi Urua
Priscilla A. Amuok
Shamsuddeen Hassan Muhammad
Aremu Anuoluwapo
Verrah Akinyi Otiende
Loice Emma Nanyanga
T. Nyoike
A. D. Akpan
Nsima Ab Udouboh
Idongesit Udeme Archibong
Idara Effiong Moses
Ifeoluwatayo A. Ige
Benjamin A. Ajibade
Olumide Benjamin Awokoya
Idris Abdulmumin
Saminu Mohammad Aliyu
Ruqayya Nasir Iro
Ibrahim Ahmad
Deontae Smith … (see 4 more)
Praise-EL Michaels
Derry Tanti Wijaya
Anietie U Andy
Low-resource languages often face challenges in acquiring high-quality language data due to the reliance on translation-based methods, which… (see more) can introduce the translationese effect. This phenomenon results in translated sentences that lack fluency and naturalness in the target language. In this paper, we propose a novel approach for data collection by leveraging storyboards to elicit more fluent and natural sentences. Our method involves presenting native speakers with visual stimuli in the form of storyboards and collecting their descriptions without direct exposure to the source text. We conducted a comprehensive evaluation comparing our storyboard-based approach with traditional text translation-based methods in terms of accuracy and fluency. Human annotators and quantitative metrics were used to assess translation quality. The results indicate a preference for text translation in terms of accuracy, while our method demonstrates worse accuracy but better fluency in the language focused.
Mixture of Experts in a Mixture of RL settings
Model-based graph reinforcement learning for inductive traffic signal control
François-Xavier Devailly
Denis Larocque
Most reinforcement learning methods for adaptive-traffic-signal-control require training from scratch to be applied on any new intersection … (see more)or after any modification to the road network, traffic distribution, or behavioral constraints experienced during training. Considering 1) the massive amount of experience required to train such methods, and 2) that experience must be gathered by interacting in an exploratory fashion with real road-network-users, such a lack of transferability limits experimentation and applicability. Recent approaches enable learning policies that generalize for unseen road-network topologies and traffic distributions, partially tackling this challenge. However, the literature remains divided between the learning of cyclic (the evolution of connectivity at an intersection must respect a cycle) and acyclic (less constrained) policies, and these transferable methods 1) are only compatible with cyclic constraints and 2) do not enable coordination. We introduce a new model-based method, MuJAM, which, on top of enabling explicit coordination at scale for the first time, pushes generalization further by allowing a generalization to the controllers' constraints. In a zero-shot transfer setting involving both road networks and traffic settings never experienced during training, and in a larger transfer experiment involving the control of 3,971 traffic signal controllers in Manhattan, we show that MuJAM, using both cyclic and acyclic constraints, outperforms domain-specific baselines as well as another transferable approach.
A Model-Based Solution to the Offline Multi-Agent Reinforcement Learning Coordination Problem
Jakob Nicolaus Foerster
Amy Zhang