Publications

Channel-Selective Normalization for Label-Shift Robust Test-Time Adaptation
An Tang
Guy Cloutier
Michael Eickenberg
Deep neural networks have useful applications in many different tasks, however their performance can be severely affected by changes in the … (see more)data distribution. For example, in the biomedical field, their performance can be affected by changes in the data (different machines, populations) between training and test datasets. To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust models to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks. It is implemented by recalculating batch normalization statistics on test batches. Prior work has focused on analysis with test data that has the same label distribution as the training data. However, in many practical applications this technique is vulnerable to label distribution shifts, sometimes producing catastrophic failure. This presents a risk in applying test time adaptation methods in deployment. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. Our selection scheme is based on two principles that we empirically motivate: (1) later layers of networks are more sensitive to label shift (2) individual features can be sensitive to specific classes. We apply the proposed technique to three classification tasks, including CIFAR10-C, Imagenet-C, and diagnosis of fatty liver, where we explore both covariate and label distribution shifts. We find that our method allows to bring the benefits of TTA while significantly reducing the risk of failure common in other methods, while being robust to choice in hyperparameters.
Code as Reward: Empowering Reinforcement Learning with VLMs
David Venuto
Mohammad Sami Nur Islam
Sherry Yang
Pre-trained Vision-Language Models (VLMs) are able to understand visual concepts, describe and decompose complex tasks into sub-tasks, and p… (see more)rovide feedback on task completion. In this paper, we aim to leverage these capabilities to support the training of reinforcement learning (RL) agents. In principle, VLMs are well suited for this purpose, as they can naturally analyze image-based observations and provide feedback (reward) on learning progress. However, inference in VLMs is computationally expensive, so querying them frequently to compute rewards would significantly slowdown the training of an RL agent. To address this challenge, we propose a framework named Code as Reward (VLM-CaR). VLM-CaR produces dense reward functions from VLMs through code generation, thereby significantly reducing the computational burden of querying the VLM directly. We show that the dense rewards generated through our approach are very accurate across a diverse set of discrete and continuous environments, and can be more effective in training RL policies than the original sparse environment rewards.
E(3)-Equivariant Mesh Neural Networks
Thuan N.a. Trang
Nhat-Khang Ngô
Thieu N. Vo
Truong Son Hy
Triangular meshes are widely used to represent three-dimensional objects. As a result, many recent works have address the need for geometric… (see more) deep learning on 3D mesh. However, we observe that the complexities in many of these architectures does not translate to practical performance, and simple deep models for geometric graphs are competitive in practice. Motivated by this observation, we minimally extend the update equations of E(n)-Equivariant Graph Neural Networks (EGNNs) (Satorras et al., 2021) to incorporate mesh face information, and further improve it to account for long-range interactions through hierarchy. The resulting architecture, Equivariant Mesh Neural Network (EMNN), outperforms other, more complicated equivariant methods on mesh tasks, with a fast run-time and no expensive pre-processing. Our implementation is available at https://github.com/HySonLab/EquiMesh
Gradient descent induces alignment between weights and the empirical NTK for deep non-linear networks
Daniel Beaglehole
Atish Agarwala
Randomized Confidence Bounds for Stochastic Partial Monitoring
The Impact of Educational Materials on Parental Anxiety and Productivity: A Clinical Trial in Pediatric Appendicitis
Julia Ferreira
Nadia Safa
Fabio Botelho
Robin Petroze
Hussein Wissanji
Pramod Puligandla
Kenneth Shaw
Maeve Trudeau
Sherif Emil
Elena Guadagno
Jean Martin Laberge
AICOM-MP: an AI-based monkeypox detector for resource-constrained environments
Tianyi Yang
Tianze Yang
Andrew Liu
Na An
Shaoshan Liu
AICOM-MP: an AI-based Monkeypox Detector for Resource-Constrained Environments
Tianyi Yang
Tianze Yang
Andrew Liu
Na An
Jie Tang
Shaoshan Liu
Effective Protein-Protein Interaction Exploration with PPIretrieval
Chenqing Hua
Connor Coley
Shuangjia Zheng
Effective Protein-Protein Interaction Exploration with PPIretrieval
Chenqing Hua
Connor W. Coley
Shuangjia Zheng
Protein-protein interactions (PPIs) are crucial in regulating numerous cellular functions, including signal transduction, transportation, an… (see more)d immune defense. As the accuracy of multi-chain protein complex structure prediction improves, the challenge has shifted towards effectively navigating the vast complex universe to identify potential PPIs. Herein, we propose PPIretrieval, the first deep learning-based model for protein-protein interaction exploration, which leverages existing PPI data to effectively search for potential PPIs in an embedding space, capturing rich geometric and chemical information of protein surfaces. When provided with an unseen query protein with its associated binding site, PPIretrieval effectively identifies a potential binding partner along with its corresponding binding site in an embedding space, facilitating the formation of protein-protein complexes.
Effective Protein-Protein Interaction Exploration with PPIretrieval
Chenqing Hua
Connor W. Coley
Shuangjia Zheng
Protein-protein interactions (PPIs) are crucial in regulating numerous cellular functions, including signal transduction, transportation, an… (see more)d immune defense. As the accuracy of multi-chain protein complex structure prediction improves, the challenge has shifted towards effectively navigating the vast complex universe to identify potential PPIs. Herein, we propose PPIretrieval, the first deep learning-based model for protein-protein interaction exploration, which leverages existing PPI data to effectively search for potential PPIs in an embedding space, capturing rich geometric and chemical information of protein surfaces. When provided with an unseen query protein with its associated binding site, PPIretrieval effectively identifies a potential binding partner along with its corresponding binding site in an embedding space, facilitating the formation of protein-protein complexes.
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
We propose a comprehensive sample-based method for assessing the quality of generative models. The proposed approach enables the estimation … (see more)of the probability that two sets of samples are drawn from the same distribution, providing a statistically rigorous method for assessing the performance of a single generative model or the comparison of multiple competing models trained on the same dataset. This comparison can be conducted by dividing the space into non-overlapping regions and comparing the number of data samples in each region. The method only requires samples from the generative model and the test data. It is capable of functioning directly on high-dimensional data, obviating the need for dimensionality reduction. Significantly, the proposed method does not depend on assumptions regarding the density of the true distribution, and it does not rely on training or fitting any auxiliary models. Instead, it focuses on approximating the integral of the density (probability mass) across various sub-regions within the data space.