We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
This document explores the advantages of integrating open source software and practices in managing a scientific lab, emphasizing reproducib… (see more)ility and the avoidance of pitfalls. It details practical applications from website management using GitHub Pages to organizing datasets in compliance with BIDS standards, highlights the importance of continuous testing for data integrity, IT management through Ansible for efficient system configuration, open source software development. The broader goal is to promote transparent, reproducible science by adopting open source tools. This approach not only saves time but exposes students to best practices, enhancing the transparency and reproducibility of scientific research.
This document explores the advantages of integrating open source software and practices in managing a scientific lab, emphasizing reproducib… (see more)ility and the avoidance of pitfalls. It details practical applications from website management using GitHub Pages to organizing datasets in compliance with BIDS standards, highlights the importance of continuous testing for data integrity, IT management through Ansible for efficient system configuration, open source software development. The broader goal is to promote transparent, reproducible science by adopting open source tools. This approach not only saves time but exposes students to best practices, enhancing the transparency and reproducibility of scientific research.
This document explores the advantages of integrating open source software and practices in managing a scientific lab, emphasizing reproducib… (see more)ility and the avoidance of pitfalls. It details practical applications from website management using GitHub Pages to organizing datasets in compliance with BIDS standards, highlights the importance of continuous testing for data integrity, IT management through Ansible for efficient system configuration, open source software development. The broader goal is to promote transparent, reproducible science by adopting open source tools. This approach not only saves time but exposes students to best practices, enhancing the transparency and reproducibility of scientific research.
Evaluating outputs of large language models (LLMs) is challenging, requiring making -- and making sense of -- many responses. Yet tools that… (see more) go beyond basic prompting tend to require knowledge of programming APIs, focus on narrow domains, or are closed-source. We present ChainForge, an open-source visual toolkit for prompt engineering and on-demand hypothesis testing of text generation LLMs. ChainForge provides a graphical interface for comparison of responses across models and prompt variations. Our system was designed to support three tasks: model selection, prompt template design, and hypothesis testing (e.g., auditing). We released ChainForge early in its development and iterated on its design with academics and online users. Through in-lab and interview studies, we find that a range of people could use ChainForge to investigate hypotheses that matter to them, including in real-world settings. We identify three modes of prompt engineering and LLM hypothesis testing: opportunistic exploration, limited evaluation, and iterative refinement.
2024-05-11
Proceedings of the CHI Conference on Human Factors in Computing Systems (published)
Social robotics researchers are increasingly interested in multi-party trained conversational agents. With a growing demand for real-world e… (see more)valuations, our study presents Large Language Models (LLMs) deployed in a month-long live show at the Edinburgh Festival Fringe. This case study investigates human improvisers co-creating with conversational agents in a professional theatre setting. We explore the technical capabilities and constraints of on-the-spot multi-party dialogue, providing comprehensive insights from both audience and performer experiences with AI on stage. Our human-in-the-loop methodology underlines the challenges of these LLMs in generating context-relevant responses, stressing the user interface's crucial role. Audience feedback indicates an evolving interest for AI-driven live entertainment, direct human-AI interaction, and a diverse range of expectations about AI's conversational competence and utility as a creativity support tool. Human performers express immense enthusiasm, varied satisfaction, and the evolving public opinion highlights mixed emotions about AI's role in arts.