Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative <scp>magnetic resonance imaging</scp>
Patrick Freund
Viveka Boller
Tim M. Emmenegger
Muhammad Akbar
Markus Hupp
Nikolai Pfender
Claudia A. M. Gandini Wheeler-Kingshott
Michael G. Fehlings
Armin Curt
Maryam Seif
Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative magnetic resonance imaging
Patrick Freund
Viveka Boller
Tim M. Emmenegger
Muhammad Akbar
Markus Hupp
Nikolai Pfender
Claudia A. M. Gandini Wheeler-Kingshott
Michael G. Fehlings
Armin Curt
Maryam Seif
Simultaneous assessment of neurodegeneration in both the cervical cord and brain across multiple centres can enhance the effectiveness of cl… (see more)inical trials. Thus, this study aims to simultaneously assess microstructural changes in the cervical cord and brain above the stenosis in degenerative cervical myelopathy (DCM) using quantitative magnetic resonance imaging (MRI) in a multicentre study.
Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative magnetic resonance imaging
Patrick Freund
Viveka Boller
Tim M. Emmenegger
Muhammad Akbar
Markus Hupp
Nikolai Pfender
Claudia A. M. Gandini Wheeler-Kingshott
Michael G. Fehlings
Armin Curt
Maryam Seif
Simultaneous assessment of neurodegeneration in both the cervical cord and brain across multiple centres can enhance the effectiveness of cl… (see more)inical trials. Thus, this study aims to simultaneously assess microstructural changes in the cervical cord and brain above the stenosis in degenerative cervical myelopathy (DCM) using quantitative magnetic resonance imaging (MRI) in a multicentre study.
TorchDriveEnv: A Reinforcement Learning Benchmark for Autonomous Driving with Reactive, Realistic, and Diverse Non-Playable Characters
Jonathan Wilder Lavington
Ke Zhang
Vasileios Lioutas
Matthew Niedoba
Yunpeng Liu
Dylan Green
Saeid Naderiparizi
Xiaoxuan Liang
Setareh Dabiri
Adam Ścibior
Berend Zwartsenberg
Frank Wood
TorchDriveEnv: A Reinforcement Learning Benchmark for Autonomous Driving with Reactive, Realistic, and Diverse Non-Playable Characters
Jonathan Wilder Lavington
Ke Zhang
Vasileios Lioutas
Matthew Niedoba
Yunpeng Liu
Dylan Green
Saeid Naderiparizi
Xiaoxuan Liang
Setareh Dabiri
Adam Ścibior
Berend Zwartsenberg
Frank Wood
The training, testing, and deployment, of autonomous vehicles requires realistic and efficient simulators. Moreover, because of the high var… (see more)iability between different problems presented in different autonomous systems, these simulators need to be easy to use, and easy to modify. To address these problems we introduce TorchDriveSim and its benchmark extension TorchDriveEnv. TorchDriveEnv is a lightweight reinforcement learning benchmark programmed entirely in Python, which can be modified to test a number of different factors in learned vehicle behavior, including the effect of varying kinematic models, agent types, and traffic control patterns. Most importantly unlike many replay based simulation approaches, TorchDriveEnv is fully integrated with a state of the art behavioral simulation API. This allows users to train and evaluate driving models alongside data driven Non-Playable Characters (NPC) whose initializations and driving behavior are reactive, realistic, and diverse. We illustrate the efficiency and simplicity of TorchDriveEnv by evaluating common reinforcement learning baselines in both training and validation environments. Our experiments show that TorchDriveEnv is easy to use, but difficult to solve.
Deep Clustering with Self-Supervision using Pairwise Similarities
Mohammadreza Sadeghi
Deep clustering incorporates embedding into clustering to find a lower-dimensional space appropriate for clustering. In this paper, we propo… (see more)se a novel deep clustering framework with self-supervision using pairwise similarities (DCSS). The proposed method consists of two successive phases. In the first phase, we propose to form hypersphere-like groups of similar data points, i.e. one hypersphere per cluster, employing an autoencoder that is trained using cluster-specific losses. The hyper-spheres are formed in the autoencoder's latent space. In the second phase, we propose to employ pairwise similarities to create a
Characterizing the voxel-based approaches in radioembolization dosimetry with reDoseMC.
Taehyung Peter Kim
BACKGROUND Yttrium-90 ( 90 Y …
Machine learning data practices through a data curation lens: An evaluation framework
Eshta Bhardwaj
Harshit Gujral
Siyi Wu
Ciara Zogheib
Christoph Becker
Studies of dataset development in machine learning call for greater attention to the data practices that make model development possible and… (see more) shape its outcomes. Many argue that the adoption of theory and practices from archives and data curation fields can support greater fairness, accountability, transparency, and more ethical machine learning. In response, this paper examines data practices in machine learning dataset development through the lens of data curation. We evaluate data practices in machine learning as data curation practices. To do so, we develop a framework for evaluating machine learning datasets using data curation concepts and principles through a rubric. Through a mixed-methods analysis of evaluation results for 25 ML datasets, we study the feasibility of data curation principles to be adopted for machine learning data work in practice and explore how data curation is currently performed. We find that researchers in machine learning, which often emphasizes model development, struggle to apply standard data curation principles. Our findings illustrate difficulties at the intersection of these fields, such as evaluating dimensions that have shared terms in both fields but non-shared meanings, a high degree of interpretative flexibility in adapting concepts without prescriptive restrictions, obstacles in limiting the depth of data curation expertise needed to apply the rubric, and challenges in scoping the extent of documentation dataset creators are responsible for. We propose ways to address these challenges and develop an overall framework for evaluation that outlines how data curation concepts and methods can inform machine learning data practices.
A Comprehensive Dataset of Four Provincial Legislative Assembly Members
Alex B. Rivard
Marc André Bodet
Éric Montigny
This research note reports on a new dataset about legislators in four Canadian provinces since the establishment of their colonial assemblie… (see more)s in the eighteenth century. Over 7,000 legislators from Ontario, Quebec, New Brunswick, and Nova Scotia are included, with consolidated information drawn from multiple sources about parliamentarians’ years of birth and death, religion, electoral performance, kinship, and several other biographical indicators. We also illustrate the utility of such data with the help of a few descriptive examples drawn from the four provinces. We believe this consolidated dataset offers several opportunities for future research on representation, legislative activities and party politics.
Hierarchies define the scalability of robot swarms
Vivek Shankar Vardharajan
Karthik Soma
Sepand Dyanatkar
Pierre-Yves Lajoie
The emerging behaviors of swarms have fascinated scientists and gathered significant interest in the field of robotics. Traditionally, swarm… (see more)s are viewed as egalitarian, with robots sharing identical roles and capabilities. However, recent findings highlight the importance of hierarchy for deploying robot swarms more effectively in diverse scenarios. Despite nature's preference for hierarchies, the robotics field has clung to the egalitarian model, partly due to a lack of empirical evidence for the conditions favoring hierarchies. Our research demonstrates that while egalitarian swarms excel in environments proportionate to their collective sensing abilities, they struggle in larger or more complex settings. Hierarchical swarms, conversely, extend their sensing reach efficiently, proving successful in larger, more unstructured environments with fewer resources. We validated these concepts through simulations and physical robot experiments, using a complex radiation cleanup task. This study paves the way for developing adaptable, hierarchical swarm systems applicable in areas like planetary exploration and autonomous vehicles. Moreover, these insights could deepen our understanding of hierarchical structures in biological organisms.
Generative Active Learning for the Search of Small-molecule Protein Binders
Maksym Korablyov
Cheng-Hao Liu
Moksh J. Jain
Almer M. van der Sloot
Eric Jolicoeur
Edward Ruediger
Andrei Cristian Nica
Kostiantyn Lapchevskyi
Daniel St-Cyr
Doris Alexandra Schuetz
Victor I Butoi
Jarrid Rector-Brooks
Simon R. Blackburn
Leo Feng
Hadi Nekoei
Sai Krishna Gottipati
Priyesh Vijayan
Prateek Gupta
Ladislav Rampášek … (see 14 more)
Sasikanth Avancha
William L. Hamilton
Brooks Paige
Sanchit Misra
Stanisław Jastrzębski
Bharat Kaul
José Miguel Hernández-Lobato
Marwin Segler
Michael M. Bronstein
Anne Marinier
Mike Tyers
Despite substantial progress in machine learning for scientific discovery in recent years, truly de novo design of small molecules which exh… (see more)ibit a property of interest remains a significant challenge. We introduce LambdaZero, a generative active learning approach to search for synthesizable molecules. Powered by deep reinforcement learning, LambdaZero learns to search over the vast space of molecules to discover candidates with a desired property. We apply LambdaZero with molecular docking to design novel small molecules that inhibit the enzyme soluble Epoxide Hydrolase 2 (sEH), while enforcing constraints on synthesizability and drug-likeliness. LambdaZero provides an exponential speedup in terms of the number of calls to the expensive molecular docking oracle, and LambdaZero de novo designed molecules reach docking scores that would otherwise require the virtual screening of a hundred billion molecules. Importantly, LambdaZero discovers novel scaffolds of synthesizable, drug-like inhibitors for sEH. In in vitro experimental validation, a series of ligands from a generated quinazoline-based scaffold were synthesized, and the lead inhibitor N-(4,6-di(pyrrolidin-1-yl)quinazolin-2-yl)-N-methylbenzamide (UM0152893) displayed sub-micromolar enzyme inhibition of sEH.
Schrödinger's Update: User Perceptions of Uncertainties in Proprietary Large Language Model Updates
Zilin Ma
Yiyang Mei
Krzysztof Z. Gajos