The next cohort of our program, designed to empower policy professionals with a comprehensive understanding of AI, will take place in Ottawa on November 28 and 29.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Pontomedullary junction as a reference for spinal cord cross-sectional area: validation across neck positions
In this paper, we create YORC: a new multi-choice Yoruba Reading Comprehension dataset that is based on Yoruba high-school reading comprehen… (see more)sion examination. We provide baseline results by performing cross-lingual transfer using existing English RACE dataset based on a pre-trained encoder-only model. Additionally, we provide results by prompting large language models (LLMs) like GPT-4.
We use the Galaxy Morphology Posterior Estimation Network (GaMPEN) to estimate morphological parameters and associated uncertainties for ∼… (see more)8 million galaxies in the Hyper Suprime-Cam Wide survey with z ≤ 0.75 and m ≤ 23. GaMPEN is a machine-learning framework that estimates Bayesian posteriors for a galaxy’s bulge-to-total light ratio (L B /L T ), effective radius (R e ), and flux (F). By first training on simulations of galaxies and then applying transfer learning using real data, we trained GaMPEN with 1% of our data set. This two-step process will be critical for applying machine-learning algorithms to future large imaging surveys, such a
Background: During the first year of the COVID-19 pandemic, the proportion of reported cases of COVID-19 among Canadians was under 6%. Altho… (see more)ugh high vaccine coverage was achieved in Canada by fall 2021, the Omicron variant caused unprecedented numbers of infections, overwhelming testing capacity and making it difficult to quantify the trajectory of population immunity. Methods: Using a time-series approach and data from more than 900 000 samples collected by 7 research studies collaborating with the COVID-19 Immunity Task Force (CITF), we estimated trends in SARS-CoV-2 seroprevalence owing to infection and vaccination for the Canadian population over 3 intervals: prevaccination (March to November 2020), vaccine roll-out (December 2020 to November 2021), and the arrival of the Omicron variant (December 2021 to March 2023). We also estimated seroprevalence by geographical region and age. Results: By November 2021, 9.0% (95% credible interval [CrI] 7.3%–11%) of people in Canada had humoral immunity to SARS-CoV-2 from an infection. Seroprevalence increased rapidly after the arrival of the Omicron variant — by Mar. 15, 2023, 76% (95% CrI 74%–79%) of the population had detectable antibodies from infections. The rapid rise in infection-induced antibodies occurred across Canada and was most pronounced in younger age groups and in the Western provinces: Manitoba, Saskatchewan, Alberta and British Columbia. Interpretation: Data up to March 2023 indicate that most people in Canada had acquired antibodies against SARS-CoV-2 through natural infection and vaccination. However, given variations in population seropositivity by age and geography, the potential for waning antibody levels, and new variants that may escape immunity, public health policy and clinical decisions should be tailored to local patterns of population immunity.
Nowadays electric vehicles (EVs) have become one of the important means of transportation all over the world. The importance of EV owners’… (see more) privacy as well as smart EV fleet charging has always been one of the challenges in smart charging planning and management. Furthermore, in smart charging, the distribution system operator must also coordinate with EV aggregators to insure that the power system is operated within security limits while reducing charging costs and satisfying EV users’ energy needs. In this paper, a semi-private framework for EV owners has been introduced which solves a two-stage optimization problem for the smart control of EV charging. This framework considers charging cost reduction and peak load shaving as well as satisfying power grid constraints. At the higher stage, based on optimal power flow calculations, the proposed control signals are transferred to the lower stage in order to facilitate optimal scheduling in accordance with the mentioned goals. The obtained results based on the proposed optimal method implemented on the IEEE 33-bus network show that compared to uncontrolled charging, the cost of charging and the peak of the network are reduced by 5.31% and 4.90%, respectively. Moreover, all the constraints of the power grid are satisfied.
2023-08-13
2023 IEEE 11th International Conference on Smart Energy Grid Engineering (SEGE) (published)
With the growing global awareness of the environmental impact of clothing consumption, there has been a notable surge in the publication of … (see more)journal articles dedicated to “fashion sustainability” in the past decade, specifically from 2010 to 2020. However, despite this wealth of research, many studies remain disconnected and fragmented due to varying research objectives, focuses, and approaches. Conducting a systematic literature review with a mixed methods research approach can help identify key research themes, trends, and developmental patterns, while also shedding light on the complexity of fashion, sustainability, and consumption. To enhance the literature review and analytical process, the current systematic literature review employed text mining techniques and bibliometric visualization tools, including RAKE, VOSviewer, and CitNetExplorer. The findings revealed an increase in the number of publications focusing on “fashion and sustainability” between 2010 and 2021. Most studies were predominantly conducted in the United States, with a specific focus on female consumers. Moreover, a greater emphasis was placed on non-sustainable cues rather than the sustainable cues. Additionally, a higher number of case studies was undertaken to investigate three fast-fashion companies. To enhance our knowledge and understanding of this subject, this article highlights several valuable contributions and provides recommendations for future research.