Publications

Data harmonization for Advancing research on Personalized Rehabilitation Interventions for Patients with Traumatic Brain Injury and Stroke: A proof of concept
Dorra Rakia Allegue
Despoina Petsani
Nathalie Ponthon
Evdokimos Konstantinidis
Panagiotis Bamidis
Eva Kehayia
Sara Ahmed
Stroke and traumatic brain injury (TBI) are leading causes of morbidity and mortality, affecting survivors’ mobility and social participat… (see more)ion. Although personalized interventions could positively impact survivors' recovery, the effectiveness of such interventions remains unclear. Open-access data repositories can provide access to multiple shared data which could help uncover new evidence of effective interventions; however, harmonizing data between different studies requires many steps to make it possible given the various methods of data collection, intervention characteristics and population sociodemographic profile. This proof-of-concept study aimed to describe the steps and anchors that contributed to the development of guiding frameworks to harmonize data across different studies. Data were extracted from the Federal Interagency Traumatic Brain Injury Research (FITBIR) repository and stored on an online cloud platform. The outcome measures were mapped to mobility determinants using the International Classification of Functioning, Disability, and Health (ICF) and Webber framework. The intervention's effect was categorized according to the Minimal Clinically Important Difference (MCID)s of the measures administered. The study proposed a novel framework for intervention features, which aims to enhance our understanding of the mechanisms of action and potential impact of rehabilitation interventions. The framework classified interventions based on their nature, context, specific body systems, dosage, caregiver assistance, and behaviour change strategies. In conclusion, this study demonstrated the feasibility of harmonizing data extracted from different sources in the FITBIR repository. Leveraging existing open databases offers tremendous opportunities to advance research on personalized interventions for patients with TBI and stroke and inform decision-making during transitions.
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnaw'e
Sabyasachi Sahoo
Yann Batiste Pequignot
Fr'ed'eric Precioso
Despite extensive research on adversarial training strategies to improve robustness, the decisions of even the most robust deep learning mod… (see more)els can still be quite sensitive to imperceptible perturbations, creating serious risks when deploying them for high-stakes real-world applications. While detecting such cases may be critical, evaluating a model's vulnerability at a per-instance level using adversarial attacks is computationally too intensive and unsuitable for real-time deployment scenarios. The input space margin is the exact score to detect non-robust samples and is intractable for deep neural networks. This paper introduces the concept of margin consistency -- a property that links the input space margins and the logit margins in robust models -- for efficient detection of vulnerable samples. First, we establish that margin consistency is a necessary and sufficient condition to use a model's logit margin as a score for identifying non-robust samples. Next, through comprehensive empirical analysis of various robustly trained models on CIFAR10 and CIFAR100 datasets, we show that they indicate strong margin consistency with a strong correlation between their input space margins and the logit margins. Then, we show that we can effectively use the logit margin to confidently detect brittle decisions with such models and accurately estimate robust accuracy on an arbitrarily large test set by estimating the input margins only on a small subset. Finally, we address cases where the model is not sufficiently margin-consistent by learning a pseudo-margin from the feature representation. Our findings highlight the potential of leveraging deep representations to efficiently assess adversarial vulnerability in deployment scenarios.
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Quentin Berthet
Learning to Design Data-structures: A Case Study of Nearest Neighbor Search
Omar Salemohamed
Vatsal Sharan
Shivam Garg
Gregory Valiant
We propose a general framework for automating data-structure design and apply it to the problem of nearest neighbor search. Our model adapts… (see more) to the underlying data distribution and provides fine-grained control over query and space complexity, enabling the discovery of solutions tailored to problem-specific constraints. We are able to reverse-engineer learned algorithms in several settings. In 1D, the model discovers optimal distribution (in)dependent algorithms such as binary search and variants of interpolation search. In higher dimensions, the model learns solutions that resemble K-d trees in some regimes, while in others, have elements of locality-sensitive hashing.
Mixture of Experts in a Mixture of RL settings
Timon Willi
Johan Samir Obando Ceron
Jakob Nicolaus Foerster
Mixtures of Experts (MoEs) have gained prominence in (self-)supervised learning due to their enhanced inference efficiency, adaptability to … (see more)distributed training, and modularity. Previous research has illustrated that MoEs can significantly boost Deep Reinforcement Learning (DRL) performance by expanding the network's parameter count while reducing dormant neurons, thereby enhancing the model's learning capacity and ability to deal with non-stationarity. In this work, we shed more light on MoEs' ability to deal with non-stationarity and investigate MoEs in DRL settings with"amplified"non-stationarity via multi-task training, providing further evidence that MoEs improve learning capacity. In contrast to previous work, our multi-task results allow us to better understand the underlying causes for the beneficial effect of MoE in DRL training, the impact of the various MoE components, and insights into how best to incorporate them in actor-critic-based DRL networks. Finally, we also confirm results from previous work.
Multimodal foundation world models for generalist embodied agents
Pietro Mazzaglia
Tim Verbelen
Bart Dhoedt
Sai Rajeswar
BayTTA: Uncertainty-aware medical image classification with optimized test-time augmentation using Bayesian model averaging
Zeinab Sherkatghanad
Moloud Abdar
Mohammadreza Bakhtyari
Test-time augmentation (TTA) is a well-known technique employed during the testing phase of computer vision tasks. It involves aggregating m… (see more)ultiple augmented versions of input data. Combining predictions using a simple average formulation is a common and straightforward approach after performing TTA. This paper introduces a novel framework for optimizing TTA, called BayTTA (Bayesian-based TTA), which is based on Bayesian Model Averaging (BMA). First, we generate a model list associated with different variations of the input data created through TTA. Then, we use BMA to combine model predictions weighted by their respective posterior probabilities. Such an approach allows one to take into account model uncertainty, and thus to enhance the predictive performance of the related machine learning or deep learning model. We evaluate the performance of BayTTA on various public data, including three medical image datasets comprising skin cancer, breast cancer, and chest X-ray images and two well-known gene editing datasets, CRISPOR and GUIDE-seq. Our experimental results indicate that BayTTA can be effectively integrated into state-of-the-art deep learning models used in medical image analysis as well as into some popular pre-trained CNN models such as VGG-16, MobileNetV2, DenseNet201, ResNet152V2, and InceptionRes-NetV2, leading to the enhancement in their accuracy and robustness performance.
On the consistency of hyper-parameter selection in value-based deep reinforcement learning
Johan Samir Obando Ceron
J. G. Ara'ujo
Deep reinforcement learning (deep RL) has achieved tremendous success on various domains through a combination of algorithmic design and car… (see more)eful selection of hyper-parameters. Algorithmic improvements are often the result of iterative enhancements built upon prior approaches, while hyper-parameter choices are typically inherited from previous methods or fine-tuned specifically for the proposed technique. Despite their crucial impact on performance, hyper-parameter choices are frequently overshadowed by algorithmic advancements. This paper conducts an extensive empirical study focusing on the reliability of hyper-parameter selection for value-based deep reinforcement learning agents, including the introduction of a new score to quantify the consistency and reliability of various hyper-parameters. Our findings not only help establish which hyper-parameters are most critical to tune, but also help clarify which tunings remain consistent across different training regimes.
Controlling Large Language Model Agents with Entropic Activation Steering
Nathan Rahn
Pierluca D'Oro
The generality of pretrained large language models (LLMs) has prompted increasing interest in their use as in-context learning agents. To be… (see more) successful, such agents must form beliefs about how to achieve their goals based on limited interaction with their environment, resulting in uncertainty about the best action to take at each step. In this paper, we study how LLM agents form and act on these beliefs by conducting experiments in controlled sequential decision-making tasks. To begin, we find that LLM agents are overconfident: They draw strong conclusions about what to do based on insufficient evidence, resulting in inadequately explorative behavior. We dig deeper into this phenomenon and show how it emerges from a collapse in the entropy of the action distribution implied by sampling from the LLM. We then demonstrate that existing token-level sampling techniques are by themselves insufficient to make the agent explore more. Motivated by this fact, we introduce Entropic Activation Steering (EAST), an activation steering method for in-context LLM agents. EAST computes a steering vector as an entropy-weighted combination of representations, and uses it to manipulate an LLM agent's uncertainty over actions by intervening on its activations during the forward pass. We show that EAST can reliably increase the entropy in an LLM agent's actions, causing more explorative behavior to emerge. Finally, EAST modifies the subjective uncertainty an LLM agent expresses, paving the way to interpreting and controlling how LLM agents represent uncertainty about their decisions.
Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent
Karolis Jucys
George Adamopoulos
Mehrab Hamidi
Stephanie Milani
Mohammad Reza Samsami
Artem Zholus
Sonia Joseph
Özgür Şimşek
Understanding the mechanisms behind decisions taken by large foundation models in sequential tasks is critical to ensuring that such systems… (see more) operate transparently and safely. However, interpretability methods have not yet been applied extensively to large-scale agents based on reinforcement learning. In this work, we perform exploratory analysis on the Video PreTraining (VPT) Minecraft playing agent, one of the largest open-source vision-based agents. We try to illuminate its reasoning mechanisms by applying various interpretability techniques. First, we analyze the attention mechanism while the agent solves its training task --- crafting a diamond pickaxe. The agent seems to pay attention to the 4 last frames and several key-frames further back. This provides clues as to how it maintains coherence in the task that takes 3-10 minutes, despite the agent's short memory span of only six seconds. Second, we perform various interventions, which help us uncover a worrying case of goal misgeneralization: VPT mistakenly identifies a villager wearing brown clothes as a tree trunk and punches it to death, when positioned stationary under green tree leaves. We demonstrate similar misbehavior in a related agent (STEVE-1), which motivates the use of VPT as a model organism for large-scale vision-based agent interpretability.
Robust Unlearning via Mechanistic Localizations
Phillip Huang Guo
Aaquib Syed
Abhay Sheshadri
Aidan Ewart
Methods for machine unlearning in large language models seek to remove undesirable knowledge or capabilities without compromising general la… (see more)nguage modeling performance. This work investigates the use of mechanistic interpretability to improve the precision and effectiveness of unlearning. We demonstrate that localizing unlearning to components with particular mechanisms in factual recall leads to more robust unlearning across different input/output formats, relearning, and latent knowledge, and reduces unintended side effects compared to nonlocalized unlearning. Additionally, we analyze the strengths and weaknesses of different automated (rather than manual) interpretability methods for guiding unlearning, finding that their corresponding unlearned models require smaller edit sizes to achieve unlearning but are much less robust.
The Responsible Foundation Model Development Cheatsheet: A Review of Tools&Resources
Shayne Longpre
Stella Biderman
Alon Albalak
Hailey Schoelkopf
Daniel McDuff
Sayash Kapoor
Kevin Klyman
Kyle Lo
Gabriel Ilharco
Nay San
Maribeth Rauh
Aviya Skowron
Bertie Vidgen
Laura Weidinger
Arvind Narayanan
Victor Sanh
Percy Liang
Rishi Bommasani
Peter Henderson 0002 … (see 3 more)
Sasha Luccioni
Yacine Jernite
Luca Soldaini