Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
RainShift: A Benchmark for Precipitation Downscaling Across Geographies
Earth System Models (ESM) are our main tool for projecting the impacts of climate change. However, running these models at sufficient resolu… (see more)tion for local-scale risk-assessments is not computationally feasible. Deep learning-based super-resolution models offer a promising solution to downscale ESM outputs to higher resolutions by learning from data. Yet, due to regional variations in climatic processes, these models typically require retraining for each geographical area-demanding high-resolution observational data, which is unevenly available across the globe. This highlights the need to assess how well these models generalize across geographic regions. To address this, we introduce RainShift, a dataset and benchmark for evaluating downscaling under geographic distribution shifts. We evaluate state-of-the-art downscaling approaches including GANs and diffusion models in generalizing across data gaps between the Global North and Global South. Our findings reveal substantial performance drops in out-of-distribution regions, depending on model and geographic area. While expanding the training domain generally improves generalization, it is insufficient to overcome shifts between geographically distinct regions. We show that addressing these shifts through, for example, data alignment can improve spatial generalization. Our work advances the global applicability of downscaling methods and represents a step toward reducing inequities in access to high-resolution climate information.
Transformers have become the cornerstone of modern large-scale language models; however, their dependence on softmax attention poses a major… (see more) computational bottleneck, particularly in long-context settings. In this work, rather than following prevalent approaches such as linear attention (or SSMs) and local attention, we introduce an intermediate design called \rat between recurrence and attention mechanisms. It partitions the input into chunks, applies a simple linear recurrence within each chunk to capture local dependencies, and then performs softmax attention across chunks to model long-range interactions. By adjusting the size of the chunk, \rat enables flexible trade-offs, combining the strengths of RNN and attention. Empirically, with a chunk size of 16, the \rat layer achieves a \(7\times\) improvement in training speed with 100K token sequences and \(9\times\) in generation at 4K sequence length, while maintaining similar or sometimes even better accuracy compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves \rat with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage compared to attention, but also consistently enhances performance, for example, achieving an average 1 point gain in commonsense reasoning tasks, up to 4 points on code tasks, and a 1 point Rouge-L increase in a summarization SFT task. Code is available at https://github.com/CLAIRE-Labo/RAT
Behavioral cloning (BC) methods trained with supervised learning (SL) are an effective way to learn policies from human demonstrations in do… (see more)mains like robotics. Goal-conditioning these policies enables a single generalist policy to capture diverse behaviors contained within an offline dataset. While goal-conditioned behavior cloning (GCBC) methods can perform well on in-distribution training tasks, they do not necessarily generalize zero-shot to tasks that require conditioning on novel state-goal pairs, i.e. combinatorial generalization. In part, this limitation can be attributed to a lack of temporal consistency in the state representation learned by BC; if temporally related states are encoded to similar latent representations, then the out-of-distribution gap for novel state-goal pairs would be reduced. Hence, encouraging this temporal consistency in the representation space should facilitate combinatorial generalization. Successor representations, which encode the distribution of future states visited from the current state, nicely encapsulate this property. However, previous methods for learning successor representations have relied on contrastive samples, temporal-difference (TD) learning, or both. In this work, we propose a simple yet effective representation learning objective,
In continual learning problems, it is often necessary to overwrite components of a neural network's learned representation in response to ch… (see more)anges in the data stream; however, neural networks often exhibit \primacy bias, whereby early training data hinders the network's ability to generalize on later tasks. While feature-learning dynamics of nonstationary learning problems are not well studied, the emergence of feature-learning dynamics is known to drive the phenomenon of grokking, wherein neural networks initially memorize their training data and only later exhibit perfect generalization. This work conjectures that the same feature-learning dynamics which facilitate generalization in grokking also underlie the ability to overwrite previous learned features as well, and methods which accelerate grokking by facilitating feature-learning dynamics are promising candidates for addressing primacy bias in non-stationary learning problems. We then propose a straightforward method to induce feature-learning dynamics as needed throughout training by increasing the effective learning rate, i.e. the ratio between parameter and update norms. We show that this approach both facilitates feature-learning and improves generalization in a variety of settings, including grokking, warm-starting neural network training, and reinforcement learning tasks.
A key ingredient for successfully applying deep reinforcement learning to challenging tasks is the effective use of data at scale. Although … (see more)originally deep RL algorithms achieved this by storing past experiences collected from a synchronous actor in an external replay memory [DQN; Mnih et al., 2013], follow-up works scaled training by collecting data asynchronously through distributed actors [R2D2; Kapturowski et al., 2018], and more recently by GPU-optimized parallelization [PQN; Gallici et al., 2024]. We argue that DQN, PQN, and R2D2 constitute a group of value-based methods for parallel training and study them to shed light on the dynamics induced by varying data collection schemes. We conduct a thorough empirical study to better understand these dynamics, and propose the Data Replay Ratio as a novel metric for quantifying data reuse. Our findings suggest that maximizing data reuse involves directly addressing the deadly triad: Q-lambda rollouts for reducing the bias from bootstrapping, the use of LayerNorm for stabilizing function approximation, and parallelized data collection for mitigating off-policy divergence.
A key ingredient for successfully applying deep reinforcement learning to challenging tasks is the effective use of data at scale. Although … (see more)originally deep RL algorithms achieved this by storing past experiences collected from a synchronous actor in an external replay memory [DQN; Mnih et al., 2013], follow-up works scaled training by collecting data asynchronously through distributed actors [R2D2; Kapturowski et al., 2018], and more recently by GPU-optimized parallelization [PQN; Gallici et al., 2024]. We argue that DQN, PQN, and R2D2 constitute a group of value-based methods for parallel training and study them to shed light on the dynamics induced by varying data collection schemes. We conduct a thorough empirical study to better understand these dynamics, and propose the Data Replay Ratio as a novel metric for quantifying data reuse. Our findings suggest that maximizing data reuse involves directly addressing the deadly triad: Q-lambda rollouts for reducing the bias from bootstrapping, the use of LayerNorm for stabilizing function approximation, and parallelized data collection for mitigating off-policy divergence.