We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Implicitly Bayesian Prediction Rules in Deep Learning
The Bayesian approach leads to coherent updates of predictions under new data, which makes adhering to Bayesian principles appealing in deci… (see more)sion-making contexts. Traditionally, integrating Bayesian principles into models like deep neural networks involves setting priors on parameters and approximating posteriors. This is done despite the fact that, typically, priors on parameters reflect any prior beliefs only insofar as they dictate function space behaviour. In this paper, we rethink this approach and consider what properties characterise a prediction rule as being Bayesian. Algorithms meeting such criteria can be deemed implicitly Bayesian — they make the same predictions as some Bayesian model, without explicitly manifesting priors and posteriors. We argue this might be a more fruitful approach towards integrating Bayesian principles into deep learning. In this paper, we propose how to measure how close a general prediction rule is to being implicitly Bayesian, and empirically evaluate multiple prediction strategies using our approach. We also show theoretically that agents relying on non-implicitly Bayesian prediction rules can be easily exploited in adversarial betting settings.
2024-07-29
Proceedings of the 6th Symposium on Advances in Approximate Bayesian Inference (published)
Single-cell multi-omics illuminate intricate cellular states, yielding transformative insights into cellular dynamics and disease. Yet, whil… (see more)e the potential of this technology is vast, the integration of its multifaceted data presents challenges. Some modalities have not reached the robustness or clarity of established scRNA-seq. Coupled with data scarcity for newer modalities and integration intricacies, these challenges limit our ability to maximize single-cell omics benefits. We introduce scCross: a tool adeptly engineered using variational autoencoder, generative adversarial network principles, and the Mutual Nearest Neighbors (MNN) technique for modality alignment. This synergy ensures seamless integration of varied single-cell multi-omics data. Beyond its foundational prowess in multi-omics data integration, scCross excels in single-cell cross-modal data generation, multi-omics data simulation, and profound in-silico cellular perturbations. Armed with these capabilities, scCross is set to transform the field of single-cell research, establishing itself in the nuanced integration, generation, and simulation of complex multi-omics data.
Offline reinforcement learning has shown promise for solving tasks in safety-critical settings, such as clinical decision support. Its appli… (see more)cation, however, has been limited by the lack of interpretability and interactivity for clinicians. To address these challenges, we propose the medical decision transformer (MeDT), a novel and versatile framework based on the goal-conditioned reinforcement learning paradigm for sepsis treatment recommendation. MeDT uses the decision transformer architecture to learn a policy for drug dosage recommendation. During offline training, MeDT utilizes collected treatment trajectories to predict administered treatments for each time step, incorporating known treatment outcomes, target acuity scores, past treatment decisions, and current and past medical states. This analysis enables MeDT to capture complex dependencies among a patient's medical history, treatment decisions, outcomes, and short-term effects on stability. Our proposed conditioning uses acuity scores to address sparse reward issues and to facilitate clinician-model interactions, enhancing decision-making. Following training, MeDT can generate tailored treatment recommendations by conditioning on the desired positive outcome (survival) and user-specified short-term stability improvements. We carry out rigorous experiments on data from the MIMIC-III dataset and use off-policy evaluation to demonstrate that MeDT recommends interventions that outperform or are competitive with existing offline reinforcement learning methods while enabling a more interpretable, personalized and clinician-directed approach.
Reinforcement learning practitioners often avoid hierarchical policies, especially in image-based observation spaces. Typically, the single-… (see more)task performance improvement over flat-policy counterparts does not justify the additional complexity associated with implementing a hierarchy. However, by introducing multiple decision-making levels, hierarchical policies can compose lower-level policies to more effectively generalize between tasks, highlighting the need for multi-task evaluations. We analyze the benefits of hierarchy through simulated multi-task robotic control experiments from pixels. Our results show that hierarchical policies trained with task conditioning can (1) increase performance on training tasks, (2) lead to improved reward and state-space generalizations in similar tasks, and (3) decrease the complexity of fine tuning required to solve novel tasks. Thus, we believe that hierarchical policies should be considered when building reinforcement learning architectures capable of generalizing between tasks.
SETTING
Mathematical modelling played an important role in the public health response to COVID-19 in Canada. Variability in epidemic traject… (see more)ories, modelling approaches, and data infrastructure across provinces provides a unique opportunity to understand the factors that shaped modelling strategies.
INTERVENTION
Provinces implemented stringent pandemic interventions to mitigate SARS-CoV-2 transmission, considering evidence from epidemic models. This study aimed to summarize provincial COVID-19 modelling efforts. We identified modelling teams working with provincial decision-makers, through referrals and membership in Canadian modelling networks. Information on models, data sources, and knowledge translation were abstracted using standardized instruments.
OUTCOMES
We obtained information from six provinces. For provinces with sustained community transmission, initial modelling efforts focused on projecting epidemic trajectories and healthcare demands, and evaluating impacts of proposed interventions. In provinces with low community transmission, models emphasized quantifying importation risks. Most of the models were compartmental and deterministic, with projection horizons of a few weeks. Models were updated regularly or replaced by new ones, adapting to changing local epidemic dynamics, pathogen characteristics, vaccines, and requests from public health. Surveillance datasets for cases, hospitalizations and deaths, and serological studies were the main data sources for model calibration. Access to data for modelling and the structure for knowledge translation differed markedly between provinces.
IMPLICATION
Provincial modelling efforts during the COVID-19 pandemic were tailored to local contexts and modulated by available resources. Strengthening Canadian modelling capacity, developing and sustaining collaborations between modellers and governments, and ensuring earlier access to linked and timely surveillance data could help improve pandemic preparedness.
Language models exhibit scaling laws, whereby increasing model and dataset size yields predictable decreases in negative log likelihood, unl… (see more)ocking a dazzling array of capabilities. This phenomenon spurs many companies to train ever larger models in pursuit of ever improved performance. Yet, these models are vulnerable to adversarial inputs such as ``jailbreaks'' and prompt injections that induce models to perform undesired behaviors, posing a growing risk as models become more capable. Prior work indicates that computer vision models become more robust with model and data scaling, raising the question: does language model robustness also improve with scale? We study this question empirically in the classification setting, finding that without explicit defense training, larger models tend to be modestly more robust on most tasks, though the effect is not reliable. Even with the advantage conferred by scale, undefended models remain easy to attack in absolute terms, and we thus turn our attention to explicitly training models for adversarial robustness, which we show to be a much more compute-efficient defense than scaling model size alone. In this setting, we also observe that adversarially trained larger models generalize faster and better to modified attacks not seen during training when compared with smaller models. Finally, we analyze the offense/defense balance of increasing compute, finding parity in some settings and an advantage for offense in others, suggesting that adversarial training alone is not sufficient to solve robustness, even at greater model scales.
Approximately two-thirds of survivors of childhood acute lymphoblastic leukemia (ALL) cancer develop late adverse effects post-treatment. Pr… (see more)ior studies explored prediction models for personalized follow-up, but none integrated the usage of neural networks to date. In this work, we propose the Error Passing Network (EPN), a graph-based method that leverages relationships between samples to propagate residuals and adjust predictions of any machine learning model. We tested our approach to estimate patients’ \vo peak, a reliable indicator of their cardiac health. We used the EPN in conjunction with several baseline models and observed up to 12.16% improvement in the mean average percentage error compared to the last established equation predicting \vo peak in childhood ALL survivors. Along with this performance improvement, our final model is more efficient considering that it relies only on clinical variables that can be self-reported by patients, therefore removing the previous need of executing a resource-consuming physical test.
2024-07-24
Proceedings of the fifth Conference on Health, Inference, and Learning (published)