Portrait of Guillaume Dumas

Guillaume Dumas

Associate Academic Member
Associate Professor, Université de Montréal, Department of Psychiatry and Addiction
Adjunct Professor, McGill University, Department of Psychiatry
Research Topics
Computational Biology
Computational Neuroscience
Deep Learning
Dynamical Systems
Machine Learning Theory
Medical Machine Learning
Reinforcement Learning

Biography

Guillaume Dumas is an associate professor of computational psychiatry in the Faculty of Medicine, Université de Montréal, and principal investigator in the Precision Psychiatry and Social Physiology laboratory at the Centre hospitalier universitaire (CHU) Sainte-Justine Research Centre. He holds the IVADO professorship for AI in Mental Health, and the Fonds de recherche du Québec - Santé (FRQS) J1 in AI and Digital Health. In 2023, Dumas was recognized as a CIFAR Azrieli Global Scholar – Brain, Mind, and Consciousness program, and nominated as a Future Leader in Canadian Brain Research by the Brain Canada Foundation.

Dumas was previously a permanent researcher in neuroscience and computational biology at the Institut Pasteur (Paris). Before that, he was a postdoctoral fellow at the Center for Complex Systems and Brain Sciences (Florida Atlanta University). He holds an engineering degree in advanced engineering and computer science (École Centrale Paris), two MSc degrees (theoretical physics, Paris-Saclay University; cognitive science, ENS/EHESS/Paris 5), and a PhD in cognitive neuroscience (Sorbonne University).

The goal of his research is to cross-fertilize AI/ML, cognitive neuroscience and digital medicine through an interdisciplinary program with two main axes:

- AI/ML for Mental Health, which aims to create new algorithms to investigate the development of human cognitive architecture and deliver personalized medicine in neuropsychiatry using data from genomes to smartphones.

- Social Neuroscience for AI/ML, which translates basic brain research and dynamical systems formalism into neurocomputational and machine learning hybrid models (NeuroML) and machines with social learning abilities (Social NeuroAI & HMI).

Current Students

Master's Research - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal

Publications

Grokking Beyond the Euclidean Norm of Model Parameters
Tikeng Notsawo Pascal Junior
Grokking refers to a delayed generalization following overfitting when optimizing artificial neural networks with gradient-based methods. I… (see more)n this work, we demonstrate that grokking can be induced by regularization, either explicit or implicit. More precisely, we show that when there exists a model with a property
Towards Multi-Brain Decoding in Autism: A Self-Supervised Learning Approach
Ghazaleh Ranjabaran
Quentin Moreau
Adrien Dubois
This study introduces a self-supervised learning (SSL) approach to hyperscanning electroencephalography (EEG) data, targeting the identifica… (see more)tion of autism spectrum condition (ASC) during social interactions. Hyperscanning enables simultaneous recording of neural activity across interacting individuals, offering a novel path for studying brain-to-brain synchrony in ASC. Leveraging a large-scale, single-brain EEG dataset for SSL pretraining, we developed a multi-brain classification model fine-tuned with hyperscanning data from dyadic interactions involving ASC and neurotypical participants. The SSL model demonstrated superior performance (78.13% accuracy) compared to supervised baselines and logistic regression using spectral EEG biomarkers. These results underscore the efficacy of SSL in addressing the challenges of limited labeled data, enhancing EEG-based diagnostic tools for ASC, and advancing research in social neuroscience.
La communication financière à l’épreuve de la crise COVID : une gestion des impressions ?
Corinne Bessieux-Ollier
Grégoire Davrinche
Nous étudions l’impact de la crise du COVID-19 sur la gestion des impressions pratiquée par les entreprises françaises cotées. Cette c… (see more)rise ayant eu un impact fort sur l’activité des entreprises, nous observons si les dirigeants modifient la manière de présenter l’information liée aux résultats non-GAAP, à travers l’utilisation de stratégies d’obscurcissement. Les données sur la gestion des impressions ont été collectées manuellement dans les communiqués de résultats annuels des entreprises du SBF 120 sur la période 2018-2020. Nous constatons une diminution générale du niveau de gestion des impressions en période de crise, notamment pour les entreprises des secteurs ayant été les plus impactés par la crise COVID. Cette diminution est toutefois moins prononcée pour les entreprises ayant sous-performé par rapport à leur secteur d’activité et pour les entreprises dont la performance a le plus diminué (indépendamment du secteur auquel elles appartiennent). Nos résultats suggèrent que les entreprises dont la baisse de performance pourrait être attribuée à des causes internes (résultats très défavorables, résultats en deçà du secteur d’activité) demeurent soucieuses de l’image qu’elles renvoient et maintiennent leur niveau de gestion des impressions malgré la crise.
A multivariable prediction model for invasive pulmonary aspergillosis in immunocompromised patients with acute respiratory failure (IPA-GRRR-OH score).
Alice Friol
Frédéric Pène
Alexandre Demoule
Achille Kouatchet
Laurent Argaud
Naike Bigé
Anne-Sophie Moreau
François Barbier
Djamel Mokart
Virginie Lemiale
Elie Azoulay
Mirror effect of genomic deletions and duplications on cognitive ability across the human cerebral cortex
Kuldeep Kumar
Sayeh Kazem
Guillaume Huguet
Thomas Renne
Worrawat Engchuan
Martineau Jean-Louis
Jakub Kopal
Zohra Saci
Omar Shanta
Bhooma Thiruvahindrapuram
Jeffrey R. MacDonald
Josephine Mollon
Laura Schultz
Emma E M Knowles
David Porteous
Gail Davies
Paul Redmond
Sarah E. Harris
Simon R. Cox
Gunter Schumann … (see 9 more)
Zdenka Pausova
Celia M. T. Greenwood
Tomas Paus
Stephen W Scherer
Laura Almasy
Jonathan Sebat
David C. Glahn
Sébastien Jacquemont
Regulation of gene expression shapes the interaction between brain networks which in-turn supports psychological processes such as cognitive… (see more) ability. How changes in level of gene expression across the cerebral cortex influence cognitive ability remains unknown. Here, we tackle this by leveraging genomic deletions and duplications - copy number variants (CNVs) that fully encompass one or more genes expressed in the human cortex - which lead to large effects on gene-expression levels. We assigned genes to 180 regions of the human cerebral cortex based on their preferential expression across the cortex computed using data from the Allen Human Brain Atlas. We aggregated CNVs in cortical regions, and ran a burden association analysis to compute the mean effect size of genes on general cognitive ability for each of the 180 regions. When affected by CNVs, most of the regional gene-sets were associated with lower cognitive ability. The spatial patterns of effect sizes across the cortex were correlated negatively between deletions and duplications. The largest effect sizes for deletions and duplications were observed for gene-sets with high expression in sensorimotor and association regions, respectively. These two opposing patterns of effect sizes were not influenced by intolerance to loss of function, demonstrating orthogonality to dosage-sensitivity scores. The same mirror patterns were also observed after stratifying genes based on cell types and developmental epochs markers. These results suggest that the effect size of gene dosage on cognitive ability follows a cortical gradient. The same brain region and corresponding gene-set may show different effects on cognition depending on whether variants increase or decrease transcription. The latter has major implications for the association of brain networks with phenotypes
Mirror effect of genomic deletions and duplications on cognitive ability across the human cerebral cortex
Kuldeep Kumar
Sayeh Kazem
Guillaume Huguet
Thomas Renne
Worrawat Engchuan
Martineau Jean-Louis
Jakub Kopal
Zohra Saci
Omar Shanta
Bhooma Thiruvahindrapuram
Jeffrey R. MacDonald
Josephine Mollon
Laura Schultz
Emma E M Knowles
David Porteous
Gail Davies
Paul Redmond
Sarah E. Harris
Simon R. Cox
Gunter Schumann … (see 9 more)
Zdenka Pausova
Celia M. T. Greenwood
Tomas Paus
Stephen W Scherer
Laura Almasy
Jonathan Sebat
David C. Glahn
Sébastien Jacquemont
Regulation of gene expression shapes the interaction between brain networks which in-turn supports psychological processes such as cognitive… (see more) ability. How changes in level of gene expression across the cerebral cortex influence cognitive ability remains unknown. Here, we tackle this by leveraging genomic deletions and duplications - copy number variants (CNVs) that fully encompass one or more genes expressed in the human cortex - which lead to large effects on gene-expression levels. We assigned genes to 180 regions of the human cerebral cortex based on their preferential expression across the cortex computed using data from the Allen Human Brain Atlas. We aggregated CNVs in cortical regions, and ran a burden association analysis to compute the mean effect size of genes on general cognitive ability for each of the 180 regions. When affected by CNVs, most of the regional gene-sets were associated with lower cognitive ability. The spatial patterns of effect sizes across the cortex were correlated negatively between deletions and duplications. The largest effect sizes for deletions and duplications were observed for gene-sets with high expression in sensorimotor and association regions, respectively. These two opposing patterns of effect sizes were not influenced by intolerance to loss of function, demonstrating orthogonality to dosage-sensitivity scores. The same mirror patterns were also observed after stratifying genes based on cell types and developmental epochs markers. These results suggest that the effect size of gene dosage on cognitive ability follows a cortical gradient. The same brain region and corresponding gene-set may show different effects on cognition depending on whether variants increase or decrease transcription. The latter has major implications for the association of brain networks with phenotypes
A video-based approach to decipher intubation decisions for the critically ill
Jean-Rémi Lavillegrand
Elie Azoulay
Effects of gene dosage on cognitive ability: A function-based association study across brain and non-brain processes
Guillaume Huguet
Thomas Renne
Cécile Poulain
Alma Dubuc
Kuldeep Kumar
Sayeh Kazem
Worrawat Engchuan
Omar Shanta
Elise Douard
Catherine Proulx
Martineau Jean-Louis
Zohra Saci
Josephine Mollon
Laura Schultz
Emma E M Knowles
Simon R. Cox
David Porteous
Gail Davies
Paul Redmond
Sarah E. Harris … (see 10 more)
Gunter Schumann
Aurélie Labbe
Zdenka Pausova
Tomas Paus
Stephen W Scherer
Jonathan Sebat
Laura Almasy
David C. Glahn
Sébastien Jacquemont
Decomposing the Brain in Autism: Linking Behavioral Domains to Neuroanatomical Variation and Genomic Underpinnings.
Hanna Seelemeyer
Caroline Gurr
Johanna Leyhausen
Lisa M. Berg
Charlotte M. Pretzsch
Tim Schäfer
Bassem Hermila
Christine M. Freitag
Eva Loth
Beth Oakley
Luke Mason
Jan K. Buitelaar
Christian Beckmann
Dorothea L. Floris
Tony Charman
Tobias Banaschewski
Thomas Bourgeron
Jumana Ahmad
Sara Ambrosino
Bonnie Auyeung … (see 56 more)
Simon Baron-Cohen
Sarah Baumeister
Sven Bölte
Carsten Bours
Michael Brammer
Daniel Brandeis
Claudia Brogna
Yvette de Bruijn
Bhismadev Chakrabarti
Ineke Cornelissen
Daisy Crawley
Flavio Dell’Acqua
Sarah Durston
Christine Ecker
Jessica Faulkner
Vincent Frouin
Pilar Garcés
David Goyard
Lindsay Ham
Hannah Hayward
Joerg F. Hipp
Rosemary Holt
Mark Johnson
Emily J. H. Jones
Prantik Kundu
Meng-Chuan Lai
Xavier Liogier D’ardhuy
Michael V. Lombardo
David J. Lythgoe
René Mandl
Andre Marquand
Maarten Mennes
Andreas Meyer-Lindenberg
Carolin Moessnang
Nico Bast
Laurence O’Dwyer
Marianne Oldehinkel
Bob Oranje
Gahan Pandina
Antonio Persico
Barbara Ruggeri
Amber N. V. Ruigrok
Jessica Sabet
Roberto Sacco
Antonia San José Cáceres
Emily Simonoff
Will Spooren
Julian Tillmann
Roberto Toro
Heike Tost
Jack Waldman
Steve C. R. Williams
Caroline Wooldridge
Marcel P. Zwiers
Declan Murphy
Decomposing the Brain in Autism: Linking Behavioral Domains to Neuroanatomical Variation and Genomic Underpinnings.
Hanna Seelemeyer
Caroline Gurr
Johanna Leyhausen
Lisa M. Berg
Charlotte M. Pretzsch
Tim Schäfer
Bassem Hermila
Christine M. Freitag
Eva Loth
Beth Oakley
Luke Mason
Jan K. Buitelaar
Christian Beckmann
Dorothea L. Floris
Tony Charman
Tobias Banaschewski
Thomas Bourgeron
Jumana Ahmad
Sara Ambrosino
Bonnie Auyeung … (see 56 more)
Simon Baron-Cohen
Sarah Baumeister
Sven Bölte
Carsten Bours
Michael Brammer
Daniel Brandeis
Claudia Brogna
Yvette de Bruijn
Bhismadev Chakrabarti
Ineke Cornelissen
Daisy Crawley
Flavio Dell’Acqua
Sarah Durston
Christine Ecker
Jessica Faulkner
Vincent Frouin
Pilar Garcés
David Goyard
Lindsay Ham
Hannah Hayward
Joerg F. Hipp
Rosemary Holt
Mark Johnson
Emily J. H. Jones
Prantik Kundu
Meng-Chuan Lai
Xavier Liogier D’ardhuy
Michael V. Lombardo
David J. Lythgoe
René Mandl
Andre Marquand
Maarten Mennes
Andreas Meyer-Lindenberg
Carolin Moessnang
Nico Bast
Laurence O’Dwyer
Marianne Oldehinkel
Bob Oranje
Gahan Pandina
Antonio Persico
Barbara Ruggeri
Amber N. V. Ruigrok
Jessica Sabet
Roberto Sacco
Antonia San José Cáceres
Emily Simonoff
Will Spooren
Julian Tillmann
Roberto Toro
Heike Tost
Jack Waldman
Steve C.R. Williams
Caroline Wooldridge
Marcel P. Zwiers
Declan Murphy
Decomposing the Brain in Autism: Linking Behavioral Domains to Neuroanatomical Variation and Genomic Underpinnings.
Hanna Seelemeyer
Caroline Gurr
Johanna Leyhausen
Lisa M. Berg
Charlotte M. Pretzsch
Tim Schäfer
Bassem Hermila
Christine M. Freitag
Eva Loth
Beth Oakley
Luke Mason
Jan K. Buitelaar
Christian Beckmann
Dorothea L. Floris
Tony Charman
Tobias Banaschewski
Emily Jones
Thomas Bourgeron
Jumana Ahmad
Sara Ambrosino … (see 58 more)
Bonnie Auyeung
Simon Baron-Cohen
Sarah Baumeister
Sven Bölte
Carsten Bours
Michael Brammer
Daniel Brandeis
Claudia Brogna
Yvette de Bruijn
Bhismadev Chakrabarti
Ineke Cornelissen
Daisy Crawley
Flavio Dell’Acqua
Sarah Durston
Christine Ecker
Jessica Faulkner
Vincent Frouin
Pilar Garcés
David Goyard
Lindsay Ham
Hannah Hayward
Joerg F. Hipp
Rosemary Holt
Mark Johnson
Emily J. H. Jones
Prantik Kundu
Meng-Chuan Lai
Xavier Liogier D’ardhuy
Michael V. Lombardo
David J. Lythgoe
René Mandl
Andre Marquand
Maarten Mennes
Andreas Meyer-Lindenberg
Carolin Moessnang
Nico Bast
Laurence O’Dwyer
Marianne Oldehinkel
Bob Oranje
Gahan Pandina
Antonio Persico
Barbara Ruggeri
Declan G.M. Murphy
Amber N. V. Ruigrok
Jessica Sabet
Roberto Sacco
Antonia San José Cáceres
Emily Simonoff
Will Spooren
Julian Tillmann
Roberto Toro
Heike Tost
Jack Waldman
Steve C. R. Williams
Caroline Wooldridge
Marcel P. Zwiers
Declan Murphy
Introducing Brain Foundation Models
Mohammad Javad Darvishi Bayazi
Hena Ghonia
Roland Riachi
Bruno Aristimunha
Arian Khorasani
Md Rifat Arefin
Sylvain Chevallier
Amin Darabi
Brain function represents one of the most complex systems driving our world. Decoding its signals poses significant challenges, particularly… (see more) due to the limited availability of data and the high cost of recordings. The existence of large hospital datasets and laboratory collections partially mitigates this issue. However, the lack of standardized recording protocols, varying numbers of channels, diverse setups, scenarios, and recording devices further complicate the task. This work addresses these challenges by introducing the Brain Foundation Model (BFM), a suite of open-source models trained on brain signals. These models serve as foundational tools for various types of time-series neuroimaging tasks. This work presents the first model of the BFM series, which is trained on electroencephalogram signal data. Our results demonstrate that BFM-EEG can generate signals more accurately than other models. Upon acceptance, we will release the model weights and pipeline.