Portrait of Gregory Dudek is unavailable

Gregory Dudek

Associate Academic Member
Full Professor, McGill University, School of Computer Science
Vice President and Lab Head of AI Research, Samsung AI Center in Montréal

Biography

Gregory Dudek is a full professor at McGill University’s School of Computer Science and full member of the McGill Research Centre for Intelligent Machines.

He is also research director of the Mobile Robotics Lab at McGill, and lab director and VP of research at Samsung AI Center Montreal.

Dudek has authored and co-authored over three hundred research publications on a wide range of subjects, including visual object description, recognition, RF localization, robotic navigation and mapping, distributed system design, 5G telecommunications and biological perception.

With Michael Jenkin, he co-authored the book “Computational Principles of Mobile Robotics” (Cambridge University Press). He has chaired and been otherwise involved in numerous national and international conferences and professional activities concerned with robotics, machine sensing and computer vision.

Dudek’s research interests include perception for mobile robotics, navigation and position estimation, environment and shape modelling, computational vision and collaborative filtering.

Current Students

PhD - McGill University
Principal supervisor :
Postdoctorate - McGill University
Principal supervisor :

Publications

Eliminating Space Scanning: Fast mmWave Beam Alignment with UWB Radios
Ju Wang
Xi Chen
Due to their large bandwidth and impressive data speed, millimeter-wave (mmWave) radios are expected to play a key role in the 5G and beyond… (see more) (e.g., 6G) communication networks. Yet, to release mmWave’s true power, the highly directional mmWave beams need to be aligned perfectly. Most existing beam alignment methods adopt an exhaustive or semi-exhaustive space scanning, which introduces up to seconds of delays. To eliminate the need for complex space scanning, this article presents an Ultra-wideband (UWB)-assisted mmWave communication framework, which leverages the co-located UWB antennas to estimate the best angles for mmWave beam alignment. One major challenge of applying this idea in the real world is the barrier of limited antenna numbers. Commercial-Off-The-Shelf (COTS) devices are usually equipped with only a small number of UWB antennas, which are not enough for the existing algorithms to provide an accurate angle estimation. To solve this challenge, we design a novel Multi-Frequency MUltiple SIgnal Classification (MF-MUSIC) algorithm, which extends the classic MUltiple SIgnal Classification (MUSIC) algorithm to the frequency domain and overcomes the antenna limitation barrier in the spatial domain. Extensive real-world experiments and numerical simulations illustrate the advantage of the proposed MF-MUSIC algorithm. MF-MUSIC uses only three antennas to achieve an accurate angle estimation, which is a mere 0.15° (or a relative difference of 3.6%) different from the state-of-the-art 16-antenna-based angle estimation method.
Augmenting Transit Network Design Algorithms with Deep Learning
Andrew Holliday
This paper considers the use of deep learning models to enhance optimization algorithms for transit network design. Transit network design i… (see more)s the problem of determining routes for transit vehicles that minimize travel time and operating costs, while achieving full service coverage. State-of-the-art meta-heuristic search algorithms give good results on this problem, but can be very time-consuming. In contrast, neural networks can learn sub-optimal but fast-to-compute heuristics based on large amounts of data. Combining these approaches, we develop a fast graph neural network model for transit planning, and use it to initialize state-of-the-art search algorithms. We show that this combination can improve the results of these algorithms on a variety of metrics by up to 17%, without increasing their run time; or they can match the quality of the original algorithms while reducing the computing time by up to a factor of 50.
Learning active tactile perception through belief-space control
Jean-François Tremblay
Johanna Hansen
Francois Hogan
Robot operating in an open world can encounter novel objects with unknown physical properties, such as mass, friction, or size. It is desira… (see more)ble to be able to sense those property through contact-rich interaction, before performing downstream tasks with the objects. We propose a method for autonomously learning active tactile perception policies, by learning a generative world model leveraging a differentiable bayesian filtering algorithm, and designing an information- gathering model predictive controller. We test the method on three simulated tasks: mass estimation, height estimation and toppling height estimation. Our method is able to discover policies which gather information about the desired property in an intuitive manner.