Portrait of Tal Arbel

Tal Arbel

Core Academic Member
Canada CIFAR AI Chair
Full Professor, McGill University, Department of Electrical and Computer Engineering
Research Topics
Causality
Computer Vision
Deep Learning
Generative Models
Medical Machine Learning
Probabilistic Models
Representation Learning

Biography

Tal Arbel is a professor in the Department of Electrical and Computer Engineering at McGill University, where she is the director of the Probabilistic Vision Group and Medical Imaging Lab in the Centre for Intelligent Machines.

She is also a Canada CIFAR AI Chair, an associate academic member of Mila – Quebec Artificial Intelligence Institute and an associate member of the Goodman Cancer Research Centre.

Arbel’s research focuses on the development of probabilistic deep learning methods in computer vision and medical image analysis for a wide range of real-world applications, with a focus on neurological diseases.

She is a recipient of the 2019 McGill Engineering Christophe Pierre Research Award and a Fellow of the Canadian Academy of Engineering. She regularly serves on the organizing team of major international conferences in computer vision and in medical image analysis (e.g. MICCAI, MIDL, ICCV, CVPR). She is currently the Editor-in-Chief and co-founder of the arXiv overlay journal: Machine Learning for Biomedical Imaging (MELBA).

Current Students

Collaborating researcher - Université de Montréal
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University
PhD - McGill University
PhD - McGill University
Master's Research - McGill University
Undergraduate - McGill University
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University

Publications

Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Spyridon Bakas
Mauricio Reyes
Andras Jakab
Stefan. Bauer
Markus Rempfler
Alessandro Crimi
Russell T. Shinohara
Christoph Berger
Sung-min Ha
Martin Rozycki
Marcel W. Prastawa
Esther Alberts
Jana Lipková
John Freymann
Justin Kirby
Michel Bilello
Hassan M. Fathallah-Shaykh
Roland Wiest
J. Kirschke
Benedikt Wiestler … (see 31 more)
Rivka R. Colen
Aikaterini Kotrotsou
Pamela LaMontagne
D. Marcus
Mikhail Milchenko
Arash Nazeri
Marc-André Weber
Abhishek Mahajan
Ujjwal Baid
Dongjin Kwon
Manu Agarwal
Mahbubul Alam
Alberto Albiol
A. Albiol
Alex A. Varghese
T. Tuan
Aaron J. Avery
Bobade Pranjal
Subhashis Banerjee
Thomas H. Batchelder
Nematollah Batmanghelich
Enzo Battistella
Martin Bendszus
E. Benson
Jose Bernal
George Biros
Mariano Cabezas
Siddhartha Chandra
Yi-Ju Chang
et al.
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneo… (see more)us histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumoris a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses thestate-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross tota lresection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.
Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
Tanya Nair
Douglas Arnold
CNN Prediction of Future Disease Activity for Multiple Sclerosis Patients from Baseline MRI and Lesion Labels
Tal Hassner
Douglas Arnold
3D U-Net for Brain Tumour Segmentation
Raghav Mehta
How to Exploit Weaknesses in Biomedical Challenge Design and Organization
Annika Reinke
Matthias Eisenmann
Sinan Onogur
Marko Stankovic
Patrick Scholz
Peter M. Full
Hrvoje Bogunovic
Bennett Landman
Oskar Maier
Bjoern Menze
Gregory C. Sharp
Korsuk Sirinukunwattana
Stefanie Speidel
F. V. D. Sommen
Guoyan Zheng
Henning Müller
Michal Kozubek
Andrew P. Bradley
Pierre Jannin … (see 2 more)
Annette Kopp-Schneider
Lena Maier-Hein
RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours
Raghav Mehta
Structured deep Fisher pruning for efficient facial trait classification
Qing Tian
James J. Clark
Fisher Pruning of Deep Nets for Facial Trait Classification
Qing Tian
James J. Clark
Although deep nets have resulted in high accuracies for various visual tasks, their computational and space requirements are prohibitively h… (see more)igh for inclusion on devices without high-end GPUs. In this paper, we introduce a neuron/filter level pruning framework based on Fisher's LDA which leads to high accuracies for a wide array of facial trait classification tasks, while significantly reducing space/computational complexities. The approach is general and can be applied to convolutional, fully-connected, and module-based deep structures, in all cases leveraging the high decorrelation of neuron activations found in the pre-decision layer and cross-layer deconv dependency. Experimental results on binary and multi-category facial traits from the LFWA and Adience datasets illustrate the framework's comparable/better performance to state-of-the-art pruning approaches and compact structures (e.g. SqueezeNet, MobileNet). Ours successfully maintains comparable accuracies even after discarding most parameters (98%-99% for VGG-16, 82% for GoogLeNet) and with significant FLOP reductions (83% for VGG-16, 64% for GoogLeNet).
Task-specific Deep LDA pruning of neural networks
Qing Tian
James J. Clark
With deep learning's success, a limited number of popular deep nets have been widely adopted for various vision tasks. However, this usually… (see more) results in unnecessarily high complexities and possibly many features of low task utility. In this paper, we address this problem by introducing a task-dependent deep pruning framework based on Fisher's Linear Discriminant Analysis (LDA). The approach can be applied to convolutional, fully-connected, and module-based deep network structures, in all cases leveraging the high decorrelation of neuron motifs found in the pre-decision layer and cross-layer deconv dependency. Moreover, we examine our approach's potential in network architecture search for specific tasks and analyze the influence of our pruning on model robustness to noises and adversarial attacks. Experimental results on datasets of generic objects, as well as domain specific tasks (CIFAR100, Adience, and LFWA) illustrate our framework's superior performance over state-of-the-art pruning approaches and fixed compact nets (e.g. SqueezeNet, MobileNet). The proposed method successfully maintains comparable accuracies even after discarding most parameters (98%-99% for VGG16, up to 82% for the already compact InceptionNet) and with significant FLOP reductions (83% for VGG16, up to 64% for InceptionNet). Through pruning, we can also derive smaller, but more accurate and more robust models suitable for the task.
Combining intraoperative ultrasound brain shift correction and augmented reality visualizations: a pilot study of eight cases
Ian J. Gerard
Marta Kersten-Oertel
Simon Drouin
Jeffery A. Hall
Kevin Petrecca
Dante De Nigris
Daniel A. Di Giovanni
D. Louis Collins
Abstract. We present our work investigating the feasibility of combining intraoperative ultrasound for brain shift correction and augmented … (see more)reality (AR) visualization for intraoperative interpretation of patient-specific models in image-guided neurosurgery (IGNS) of brain tumors. We combine two imaging technologies for image-guided brain tumor neurosurgery. Throughout surgical interventions, AR was used to assess different surgical strategies using three-dimensional (3-D) patient-specific models of the patient’s cortex, vasculature, and lesion. Ultrasound imaging was acquired intraoperatively, and preoperative images and models were registered to the intraoperative data. The quality and reliability of the AR views were evaluated with both qualitative and quantitative metrics. A pilot study of eight patients demonstrates the feasible combination of these two technologies and their complementary features. In each case, the AR visualizations enabled the surgeon to accurately visualize the anatomy and pathology of interest for an extended period of the intervention. Inaccuracies associated with misregistration, brain shift, and AR were improved in all cases. These results demonstrate the potential of combining ultrasound-based registration with AR to become a useful tool for neurosurgeons to improve intraoperative patient-specific planning by improving the understanding of complex 3-D medical imaging data and prolonging the reliable use of IGNS.
Challenging Conventional Segmentation Evaluation Metrics Focal Pathology ( Lesion and Tumour ) Segmentation from Patient Images
How can we do better ? Pitfalls in biomedical challenge design and how to address them
Annika Reinke
Matthias Eisenmann
Sinan Onogur
Marko Stankovic
Patrick Scholz
Hrvoje Bogunovic
Andrew P. Bradley
Aaron
Carass
Carolin Feldmann
Alejandro F. Frangi
Peter M. Full
Bram Ginneken Van
Ginneken
Allan Hanbury
Katrin Honauer
Michal Kozubek
Adam Bennett
Landman … (see 22 more)
Keno März
Oskar Maier
Klaus Maier-Hein
Bjoern Menze
Henning Müller
Peter F. Neher
Wiro Niessen
NASIR RAJPOOT
Catherine Gregory
Sharp
Korsuk Sirinukunwattana
Stefanie Speidel
Christian Stock
Danail
Stoyanov
Abdel Aziz Taha
F. V. D. Sommen
Ching-Wei Wang
Marc-André Weber
Guoyan Zheng
Pierre Jannin
Lena Maier-Hein
Since the first MICCAI grand challenge was organized in 2007 [1], the impact of biomedical image analysis challenges on both the research fi… (see more)eld as well as on individual careers has been steadily growing. For example, the acceptance of a journal article today often depends on the performance of a new algorithm being assessed against the state-ofthe-art work on publicly available challenge datasets. Furthermore, the results are also important for the individuals scientific careers as well as the potential that algorithms can be translated into clinical practice. Yet, while the publication of papers in scientific journals and prestigious conferences, such as MICCAI, undergoes strict quality control, the design and organization of challenges do not. To investigate the effect of common practice, we have formed an international initiative dedicated to analyzing and improving a variety of aspects related to biomedical challenge design, execution and reporting [2]. In the first part of our abstract presentation at LABELS workshop, we are going to present some of the major pitfalls related to biomedical image analysis challenges today. Specifically, we will look at the following research questions: RQ1: How robust are challenge rankings? What is the effect of – the specific test cases used? – the specific metric variant(s) applied? – the rank aggregation method chosen (e.g. aggregation of metric values with the mean vs median)? ? Shared first/senior authors.