Portrait of Tal Arbel

Tal Arbel

Core Academic Member
Canada CIFAR AI Chair
Full Professor, McGill University, Department of Electrical and Computer Engineering
Research Topics
Causality
Computer Vision
Deep Learning
Generative Models
Medical Machine Learning
Probabilistic Models
Representation Learning

Biography

Tal Arbel is a professor in the Department of Electrical and Computer Engineering at McGill University, where she is the director of the Probabilistic Vision Group and Medical Imaging Lab in the Centre for Intelligent Machines.

She is also a Canada CIFAR AI Chair, an associate academic member of Mila – Quebec Artificial Intelligence Institute and an associate member of the Goodman Cancer Research Centre.

Arbel’s research focuses on the development of probabilistic deep learning methods in computer vision and medical image analysis for a wide range of real-world applications, with a focus on neurological diseases.

She is a recipient of the 2019 McGill Engineering Christophe Pierre Research Award and a Fellow of the Canadian Academy of Engineering. She regularly serves on the organizing team of major international conferences in computer vision and in medical image analysis (e.g. MICCAI, MIDL, ICCV, CVPR). She is currently the Editor-in-Chief and co-founder of the arXiv overlay journal: Machine Learning for Biomedical Imaging (MELBA).

Current Students

Postdoctorate - McGill University
PhD - McGill University
Master's Research - McGill University
Master's Research - McGill University
PhD - McGill University
Master's Research - McGill University
PhD - McGill University
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University
Undergraduate - McGill University
Undergraduate - McGill University

Publications

Estimating individual treatment effect on disability progression in multiple sclerosis using deep learning
Jean-Pierre R. Falet
Joshua D. Durso-Finley
Brennan Nichyporuk
Julien Schroeter
Francesca Bovis
Maria-Pia Sormani
Douglas Arnold
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Metrics and Benchmarking Results
Raghav Mehta
Angelos Filos
Ujjwal Baid
Chiharu Sako
Richard McKinley
Michael Rebsamen
Katrin Dätwyler
Raphael Meier
Piotr Radojewski
Gowtham Krishnan Murugesan
Sahil Nalawade
Chandan Ganesh
Benjamin C. Wagner
Fang Frank Yu
Baowei Fei
Ananth J. Madhuranthakam
Joseph A. Maldjian
Laura Daza
Catalina Gómez
Pablo Arbeláez … (see 72 more)
Chengliang Dai
Shuo Wang
Hadrien Reynaud
Yuanhan Mo
Elsa Angelini
Yike Guo
Wenjia Bai
Subhashis Banerjee
Linmin Pei
Murat AK
Sarahi Rosas-González
Ilyess Zemmoura
Clovis Tauber
Minh H. Vu
Tufve Nyholm
Tommy Löfstedt
Laura Mora Ballestar
Veronica Vilaplana
Hugh McHugh
Gonzalo Maso Talou
Alan Wang
Jay Patel
Ken Chang
Katharina Hoebel
Mishka Gidwani
Nishanth Arun
Sharut Gupta
Mehak Aggarwal
Praveer Singh
Elizabeth R. Gerstner
Jayashree Kalpathy-Cramer
Nicolas Boutry
Alexis Huard
Lasitha Vidyaratne
Md Monibor Rahman
Khan M. Iftekharuddin
Joseph Chazalon
Elodie Puybareau
Guillaume Tochon
Jun Ma
Mariano Cabezas
Xavier Llado
Arnau Oliver
Liliana Valencia
Sergi Valverde
Mehdi Amian
Mohammadreza Soltaninejad
Andriy Myronenko
Ali Hatamizadeh
Xue Feng
Quan Dou
Nicholas Tustison
Craig Meyer
Nisarg A. Shah
Sanjay Talbar
Marc-André Weber
Abhishek Mahajan
Andras Jakab
Roland Wiest
Hassan M. Fathallah-Shaykh
Arash Nazeri
Mikhail Milchenko
Daniel Marcus
Aikaterini Kotrotsou
Rivka R. Colen
John Freymann
Justin Kirby
Christos Davatzikos
Bjoern Menze
Spyridon Bakas
Yarin Gal
Heatmap Regression for Lesion Detection using Pointwise Annotations
Chelsea Myers-Colet
Julien Schroeter
Douglas Arnold
In many clinical contexts, detecting all lesions is imperative for evaluating disease activity. Standard approaches pose lesion detection as… (see more) a segmentation problem despite the time-consuming nature of acquiring segmentation labels. In this paper, we present a lesion detection method which relies only on point labels. Our model, which is trained via heatmap regression, can detect a variable number of lesions in a probabilistic manner. In fact, our proposed post-processing method offers a reliable way of directly estimating the lesion existence uncertainty. Experimental results on Gad lesion detection show our point-based method performs competitively compared to training on expensive segmentation labels. Finally, our detection model provides a suitable pre-training for segmentation. When fine-tuning on only 17 segmentation samples, we achieve comparable performance to training with the full dataset.
Counterfactual Image Synthesis for Discovery of Personalized Predictive Image Markers
Amar Kumar
Anjun Hu
Brennan Nichyporuk
Jean-Pierre R. Falet
Douglas Arnold
Sotirios A. Tsaftaris
Information Gain Sampling for Active Learning in Medical Image Classification
Raghav Mehta
Changjian Shui
Brennan Nichyporuk
GP.2 Deep learning prediction of response to disease modifying therapy in primary progressive multiple sclerosis
JR Falet
Joshua D. Durso-Finley
Brennan Nichyporuk
Julien Schroeter
Francesca Bovis
M Sormani
D Precup
DL Arnold
Background: Only one disease modifying therapy (DMT), ocrelizumab, was found to slow disability progression in primary progressive multiple … (see more)sclerosis (PPMS). Modeling the conditional average treatment effect (CATE) using deep learning could identify individuals more responsive to DMTs, allowing for predictive enrichment to increase the power of future clinical trials. Methods: Baseline clinical and MRI data were acquired as part of three placebo-controlled randomized clinical trials: ORATORIO (ocrelizumab), OLYMPUS (rituximab) and ARPEGGIO (laquinimod). Data from ORATORIO and OLYMPUS was separated into a training (70%) and testing (30%) set, while ARPEGGIO served as additional validation. An ensemble of multitask multilayer perceptrons was trained to predict the rate of disability progression on both treatment and placebo to estimate CATE. Results: The model could separate individuals based on their predicted treatment effect. The top 25% of individuals predicted to respond most have a larger effect size (HR 0.442, p=0.0497) than the entire group (HR 0.787, p=0.292). The model could also identify responders to laquinimod. A simulated study where the 50% most responsive individuals are randomized would require 6-times less participants to detect a significant effect. Conclusions: Individuals with PPMS who respond favourably to DMTs can be identified using deep learning based on their baseline clinical and imaging characteristics.
Metrics Reloaded - A new recommendation framework for biomedical image analysis validation
Annika Reinke
Lena Maier-Hein
Evangelia Christodoulou
Ben Glocker
Patrick Scholz
Fabian Isensee
Jens Kleesiek
Michal Kozubek
Mauricio Reyes
Michael Alexander Riegler
Manuel Wiesenfarth
Michael Baumgartner
Matthias Eisenmann
DOREEN HECKMANN-NÖTZEL
Ali Emre Kavur
TIM RÄDSCH
Minu D. Tizabi
LAURA ACION
Michela Antonelli
Spyridon Bakas
Peter Bankhead
Arriel Benis
M. Jorge Cardoso
Veronika Cheplygina
Beth A Cimini
Gary S. Collins
Keyvan Farahani
Bram van Ginneken
Fred A Hamprecht
Daniel A. Hashimoto
Michael M. Hoffman
Merel Huisman
Pierre Jannin
Charles Kahn
ALEXANDROS KARARGYRIS
Alan Karthikesalingam
Hannes Kenngott
Annette Kopp-Schneider
Anna Kreshuk
Tahsin Kurc
Bennett Landman
GEERT LITJENS
Amin Madani
Klaus Maier-Hein
Anne Martel
Peter Mattson
ERIK MEIJERING
Bjoern Menze
David Moher
KAREL G.M. MOONS
Henning Müller
Brennan Nichyporuk
Felix Nickel
Jens Petersen
NASIR RAJPOOT
Nicola Rieke
Julio Saez-Rodriguez
Clara I. Sánchez
SHRAVYA SHETTY
Maarten van Smeden
Carole H. Sudre
Ronald M. Summers
Abdel A. Taha
Sotirios A. Tsaftaris
Ben Van Calster
Gael Varoquaux
Paul F Jaeger
Meaningful performance assessment of biomedical image analysis algorithms depends on objective and appropriate performance metrics. There ar… (see more)e major shortcomings in the current state of the art. Yet, so far limited attention has been paid to practical pitfalls associated when using particular metrics for image analysis tasks. Therefore, a number of international initiatives have collaborated to offer researchers with guidance and tools for selecting performance metrics in a problem-aware manner. In our proposed framework, the characteristics of the given biomedical problem are first captured in a problem fingerprint, which identifies properties related to domain interests, the target structure(s), the input datasets, and algorithm output. A problem category-specific mapping is applied in the second step to match fingerprints to metrics that reflect domain requirements. Based on input from experts from more than 60 institutions worldwide, we believe our metric recommendation framework to be useful to the MIDL community and to enhance the quality of biomedical image analysis algorithm validation.
Deep Learning Prediction of Response to Disease Modifying Therapy in Primary Progressive Multiple Sclerosis (P1-1.Virtual)
Jean-Pierre R. Falet
Joshua D. Durso-Finley
Brennan Nichyporuk
Julien Schroeter
Francesca Bovis
Maria-Pia Sormani
Douglas Arnold
Personalized Prediction of Future Lesion Activity and Treatment Effect in Multiple Sclerosis from Baseline MRI
Joshua D. Durso-Finley
Jean-Pierre R. Falet
Brennan Nichyporuk
Douglas Arnold
Precision medicine for chronic diseases such as multiple sclerosis (MS) involves choosing a treatment which best balances efficacy and side … (see more)effects/preferences for individual patients. Making this choice as early as possible is important, as delays in finding an effective therapy can lead to irreversible disability accrual. To this end, we present the first deep neural network model for individualized treatment decisions from baseline magnetic resonance imaging (MRI) (with clinical information if available) for MS patients which (a) predicts future new and enlarging T2 weighted (NE-T2) lesion counts on follow-up MRI on multiple treatments and (b) estimates the conditional average treatment effect (CATE), as defined by the predicted future suppression of NE-T2 lesions, between different treatment options relative to placebo. Our model is validated on a proprietary federated dataset of 1817 multi-sequence MRIs acquired from MS patients during four multi-centre randomized clinical trials. Our framework achieves high average precision in the binarized regression of future NE-T2 lesions on five different treatments, identifies heterogeneous treatment effects, and provides a personalized treatment recommendation that accounts for treatment-associated risk (side effects, patient preference, administration difficulties).
On Learning Fairness and Accuracy on Multiple Subgroups
Changjian Shui
Gezheng Xu
Qi CHEN
Jiaqi Li
Charles Ling
Boyu Wang
We propose an analysis in fair learning that preserves the utility of the data while reducing prediction disparities under the criteria of g… (see more)roup sufficiency. We focus on the scenario where the data contains multiple or even many subgroups, each with limited number of samples. As a result, we present a principled method for learning a fair predictor for all subgroups via formulating it as a bilevel objective. Specifically, the subgroup specific predictors are learned in the lower-level through a small amount of data and the fair predictor. In the upper-level, the fair predictor is updated to be close to all subgroup specific predictors. We further prove that such a bilevel objective can effectively control the group sufficiency and generalization error. We evaluate the proposed framework on real-world datasets. Empirical evidence suggests the consistently improved fair predictions, as well as the comparable accuracy to the baselines.
Estimating treatment effect for individuals with progressive multiple sclerosis using deep learning
JR Falet
Joshua D. Durso-Finley
Brennan Nichyporuk
Jan Schroeter
Francesca Bovis
Maria-Pia Sormani
Douglas Arnold
Cohort Bias Adaptation in Aggregated Datasets for Lesion Segmentation
Brennan Nichyporuk
Jillian L. Cardinell
Justin Szeto
Raghav Mehta
Sotirios A. Tsaftaris
Douglas Arnold