Portrait of Tal Arbel

Tal Arbel

Core Academic Member
Canada CIFAR AI Chair
Full Professor, McGill University, Department of Electrical and Computer Engineering
Research Topics
Causality
Computer Vision
Deep Learning
Generative Models
Medical Machine Learning
Probabilistic Models
Representation Learning

Biography

Tal Arbel is a professor in the Department of Electrical and Computer Engineering at McGill University, where she is the director of the Probabilistic Vision Group and Medical Imaging Lab in the Centre for Intelligent Machines.

She is also a Canada CIFAR AI Chair, an associate academic member of Mila – Quebec Artificial Intelligence Institute and an associate member of the Goodman Cancer Research Centre.

Arbel’s research focuses on the development of probabilistic deep learning methods in computer vision and medical image analysis for a wide range of real-world applications, with a focus on neurological diseases.

She is a recipient of the 2019 McGill Engineering Christophe Pierre Research Award and a Fellow of the Canadian Academy of Engineering. She regularly serves on the organizing team of major international conferences in computer vision and in medical image analysis (e.g. MICCAI, MIDL, ICCV, CVPR). She is currently the Editor-in-Chief and co-founder of the arXiv overlay journal: Machine Learning for Biomedical Imaging (MELBA).

Current Students

Collaborating researcher - Université de Montréal
Master's Research - McGill University
Collaborating researcher - McGill University University
Master's Research - McGill University
PhD - McGill University
PhD - McGill University
Master's Research - McGill University
Collaborating researcher - N/A
Undergraduate - McGill University
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University
Collaborating researcher - UBC

Publications

Pixel Perfect MegaMed: A Megapixel-Scale Vision-Language Foundation Model for Generating High Resolution Medical Images
Zahra Tehrani Nasab
Exposing and Mitigating Calibration Biases and Demographic Unfairness in MLLM Few-Shot In-Context Learning for Medical Image Classification
Mingyang Li
Hengguan Huang
Multimodal large language models (MLLMs) have enormous potential to perform few-shot in-context learning in the context of medical image ana… (see more)lysis. However, safe deployment of these models into real-world clinical practice requires an in-depth analysis of the accuracies of their predictions, and their associated calibration errors, particularly across different demographic subgroups. In this work, we present the first investigation into the calibration biases and demographic unfairness of MLLMs'predictions and confidence scores in few-shot in-context learning for medical image classification. We introduce CALIN, an inference-time calibration method designed to mitigate the associated biases. Specifically, CALIN estimates the amount of calibration needed, represented by calibration matrices, using a bi-level procedure: progressing from the population level to the subgroup level prior to inference. It then applies this estimation to calibrate the predicted confidence scores during inference. Experimental results on three medical imaging datasets: PAPILA for fundus image classification, HAM10000 for skin cancer classification, and MIMIC-CXR for chest X-ray classification demonstrate CALIN's effectiveness at ensuring fair confidence calibration in its prediction, while improving its overall prediction accuracies and exhibiting minimum fairness-utility trade-off. Our codebase can be found at https://github.com/xingbpshen/medical-calibration-fairness-mllm.
Language-Guided Trajectory Traversal in Disentangled Stable Diffusion Latent Space for Factorized Medical Image Generation
Zahra Tehrani Nasab
Exposing and Mitigating Calibration Biases and Demographic Unfairness in MLLM Few-Shot In-Context Learning for Medical Image Classification
Mingyang Li
Hengguan Huang
Language-Guided Trajectory Traversal in Disentangled Stable Diffusion Latent Space for Factorized Medical Image Generation
Text-to-image diffusion models have demonstrated a remarkable ability to generate photorealistic images from natural language prompts. These… (see more) high-resolution, language-guided synthesized images are essential for the explainability of disease or exploring causal relationships. However, their potential for disentangling and controlling latent factors of variation in specialized domains like medical imaging remains under-explored. In this work, we present the first investigation of the power of pre-trained vision-language foundation models, once fine-tuned on medical image datasets, to perform latent disentanglement for factorized medical image generation and interpolation. Through extensive experiments on chest X-ray and skin datasets, we illustrate that fine-tuned, language-guided Stable Diffusion inherently learns to factorize key attributes for image generation, such as the patient's anatomical structures or disease diagnostic features. We devise a framework to identify, isolate, and manipulate key attributes through latent space trajectory traversal of generative models, facilitating precise control over medical image synthesis.
Language-Guided Trajectory Traversal in Disentangled Stable Diffusion Latent Space for Factorized Medical Image Generation
Leveraging Vision-Language Foundation Models to Reveal Hidden Image-Attribute Relationships in Medical Imaging
Leveraging Vision-Language Foundation Models to Reveal Hidden Image-Attribute Relationships in Medical Imaging
Vision-language foundation models (VLMs) have shown impressive performance in guiding image generation through text, with emerging applicati… (see more)ons in medical imaging. In this work, we are the first to investigate the question: 'Can fine-tuned foundation models help identify critical, and possibly unknown, data properties?' By evaluating our proposed method on a chest x-ray dataset, we show that these models can generate high-resolution, precisely edited images compared to methods that rely on Structural Causal Models (SCMs) according to numerous metrics. For the first time, we demonstrate that fine-tuned VLMs can reveal hidden data relationships that were previously obscured due to available metadata granularity and model capacity limitations. Our experiments demonstrate both the potential of these models to reveal underlying dataset properties while also exposing the limitations of fine-tuned VLMs for accurate image editing and susceptibility to biases and spurious correlations.
Conditional Diffusion Models are Medical Image Classifiers that Provide Explainability and Uncertainty for Free
PRISM: High-Resolution&Precise Counterfactual Medical Image Generation using Language-guided Stable Diffusion
Developing reliable and generalizable deep learning systems for medical imaging faces significant obstacles due to spurious correlations, da… (see more)ta imbalances, and limited text annotations in datasets. Addressing these challenges requires architectures robust to the unique complexities posed by medical imaging data. The rapid advancements in vision-language foundation models within the natural image domain prompt the question of how they can be adapted for medical imaging tasks. In this work, we present PRISM, a framework that leverages foundation models to generate high-resolution, language-guided medical image counterfactuals using Stable Diffusion. Our approach demonstrates unprecedented precision in selectively modifying spurious correlations (the medical devices) and disease features, enabling the removal and addition of specific attributes while preserving other image characteristics. Through extensive evaluation, we show how PRISM advances counterfactual generation and enables the development of more robust downstream classifiers for clinically deployable solutions. To facilitate broader adoption and research, we make our code publicly available at https://github.com/Amarkr1/PRISM.
RL4Med-DDPO: Reinforcement Learning for Controlled Guidance Towards Diverse Medical Image Generation using Vision-Language Foundation Models
PRISM: High-Resolution & Precise Counterfactual Medical Image Generation using Language-guided Stable Diffusion
Developing reliable and generalizable deep learning systems for medical imaging faces significant obstacles due to spurious correlations, da… (see more)ta imbalances, and limited text annotations in datasets. Addressing these challenges requires architectures robust to the unique complexities posed by medical imaging data. The rapid advancements in vision-language foundation models within the natural image domain prompt the question of how they can be adapted for medical imaging tasks. In this work, we present PRISM, a framework that leverages foundation models to generate high-resolution, language-guided medical image counterfactuals using Stable Diffusion. Our approach demonstrates unprecedented precision in selectively modifying spurious correlations (the medical devices) and disease features, enabling the removal and addition of specific attributes while preserving other image characteristics. Through extensive evaluation, we show how PRISM advances counterfactual generation and enables the development of more robust downstream classifiers for clinically deployable solutions. To facilitate broader adoption and research, we make our code publicly available at https://github.com/Amarkr1/PRISM.