Portrait of Laura J. Pollock is unavailable

Laura J. Pollock

Associate Academic Member
Assistant Professor, McGill University, Department of Biology
Research Topics
Computational Biology
Probabilistic Models

Biography

I am an assistant professor of conservation, ecology, evolution and behaviour in the Biology Department at McGill University.

As a quantitative ecologist, I am interested in large-scale patterns of biodiversity at regional, continental or global scales. My research focuses on the effects of climate change on biodiversity, which combines many biodiversity data inputs with predictive models. The second part of my research is focused on optimizations for identifying key biodiversity areas and efficient conservation solutions.

Publications

Plant invasion in Mediterranean Europe: current hotspots and future scenarios
Luigi Cao Pinna
Laure Gallien
Irena Axmanová
Milan Chytrý
Marco Malavasi
Alicia T. R. Acosta
Juan Antonio Campos
Marta Carboni
The Mediterranean Basin has historically been subject to alien plant invasions that threaten its unique biodiversity. This seasonally dry an… (see more)d densely populated region is undergoing severe climatic and socioeconomic changes, and it is unclear whether these changes will worsen or mitigate plant invasions. Predictions are often biased, as species may not be in equilibrium in the invaded environment, depending on their invasion stage and ecological characteristics. To address future predictions uncertainty, we identified invasion hotspots across multiple biased modelling scenarios and ecological characteristics of successful invaders. We selected 92 alien plant species widespread in Mediterranean Europe and compiled data on their distribution in the Mediterranean and worldwide. We combined these data with environmental and propagule pressure variables to model global and regional species niches, and map their current and future habitat suitability. We identified invasion hotspots, examined their potential future shifts, and compared the results of different modelling strategies. Finally, we generalised our findings by using linear models to determine the traits and biogeographic features of invaders most likely to benefit from global change. Currently, invasion hotspots are found near ports and coastlines throughout Mediterranean Europe. However, many species occupy only a small portion of the environmental conditions to which they are preadapted, suggesting that their invasion is still an ongoing process. Future conditions will lead to declines in many currently widespread aliens, which will tend to move to higher elevations and latitudes. Our trait models indicate that future climates will generally favour species with conservative ecological strategies that can cope with reduced water availability, such as those with short stature and low specific leaf area. Taken together, our results suggest that in future environments, these conservative aliens will move farther from the introduction areas and upslope, threatening mountain ecosystems that have been spared from invasions so far.
Novel community data in ecology-properties and prospects.
Florian Hartig
Nerea Abrego
Alex Bush
Jonathan M. Chase
G. Guillera‐Arroita
M. Leibold
Otso T. Ovaskainen
Loïc Pellissier
Maximilian Pichler
Giovanni Poggiato
Sara Si-moussi
Wilfried Thuiller
Duarte S Viana
D. Warton
Damaris Zurell
Douglas W. Yu
Vulnerability of terrestrial vertebrate food webs to anthropogenic threats in Europe
Louise M. J. O'Connor
Francesca Cosentino
Michael B. J. Harfoot
Luigi Maiorano
Chiara Mancino
Wilfried Thuiller
Vertebrate species worldwide are currently facing significant declines in many populations. Although we have gained substantial knowledge ab… (see more)out the direct threats that affect individual species, these threats only represent a fraction of the broader vertebrate threat profile, which is also shaped by species interactions. For example, threats faced by prey species can jeopardize the survival of their predators due to food resource scarcity. Yet, indirect threats arising from species interactions have received limited investigation thus far. In this study, we investigate the indirect consequences of anthropogenic threats on biodiversity in the context of European vertebrate food webs. We integrated data on trophic interactions among over 800 terrestrial vertebrates, along with their associated human‐induced threats. We quantified and mapped the vulnerability of various components of the food web, including species, interactions, and trophic groups to six major threats: pollution, agricultural intensification, climate change, direct exploitation, urbanization, and invasive alien species and diseases. Direct exploitation and agricultural intensification were two major threats for terrestrial vertebrate food webs: affecting 34% and 31% of species, respectively, they threaten 85% and 69% of interactions in Europe. By integrating network ecology with threat impact assessments, our study contributes to a better understanding of the magnitude of anthropogenic impacts on biodiversity.
Linking biodiversity, ecosystem function, and Nature's contributions to people: a macroecological energy flux perspective.
Ana Carolina Antunes
Emilio Berti
Ulrich Brose
Myriam R. Hirt
Dirk N. Karger
Louise M. J. O'Connor
Wilfried Thuiller
Benoit Gauzens
Linking biodiversity, ecosystem function, and Nature’s contributions to people: a macroecological energy flux perspective
Ana Carolina Antunes
Emilio Berti
Ulrich Brose
Myriam R. Hirt
Dirk N. Karger
Louise M. J. O'Connor
Wilfried Thuiller
Benoit Gauzens
Trait‐matching models predict pairwise interactions across regions, not food web properties
Dominique Caron
Ulrich Brose
Miguel Lurgi
F. Guillaume Blanchet
Dominique Gravel
Food webs are essential for understanding how ecosystems function, but empirical data on the interactions that make up these ecological netw… (see more)orks are lacking for most taxa in most ecosystems. Trait‐based models can fill these data gaps, but their ability to do so has not been widely tested. We test how well these models can extrapolate to new ecological communities both in terms of pairwise predator–prey interactions and higher level food web attributes (i.e. species position, food web‐level properties).Canada, Europe, Tanzania.Current.Terrestrial vertebrates.We train trait‐based models of pairwise trophic interactions on four independent vertebrate food webs (Canadian tundra, Serengeti, alpine south‐eastern Pyrenees and Europe) and evaluate how well these models predict pairwise interactions and network properties of each food web.We find that, overall, trait‐based models predict most interactions and their absence correctly. Performance was best for training and testing on the same food web (AUC > 0.90) and declined with environmental and phylogenetic distances with the strongest loss of performance for the tundra‐Serengeti ecosystems (AUC > 0.75). Network metrics were less well‐predicted than single interactions by our models with predicted food webs being more connected, less modular, and with higher mean trophic levels than observed.Theory predicts that the variability observed in food webs can be explained by differences in trait distributions and trait‐matching relationships. Our finding that trait‐based models can predict many trophic interactions, even in contrasting environments, adds to the growing body of evidence that there are general constraints on interactions and that trait‐based methods can serve as a useful first approximation of food webs in unknown areas. However, food webs are more than the sum of their parts, and predicting network attributes will likely require models that simultaneously predict individual interactions and community constraints.
Trait‐matching models predict pairwise interactions across regions, not food web properties
Dominique Caron
Ulrich Brose
Miguel Lurgi
F. Guillaume Blanchet
Dominique Gravel
Transnational conservation to anticipate future plant shifts in Europe
Yohann Chauvier-Mendes
Peter H. Verburg
Dirk N. Karger
Loïc Pellissier
Sébastien Lavergne
Niklaus E. Zimmermann
Wilfried Thuiller
Transnational conservation to anticipate future plant shifts in Europe
Yohann Chauvier-Mendes
Peter H. Verburg
Dirk N. Karger
Loïc Pellissier
Sébastien Lavergne
Niklaus E. Zimmermann
Wilfried Thuiller
Transnational conservation to anticipate future plant shifts in Europe
Yohann Chauvier-Mendes
Peter H. Verburg
Dirk N. Karger
Loïc Pellissier
Sébastien Lavergne
Niklaus E. Zimmermann
Wilfried Thuiller
Author Correction: 30×30 biodiversity gains rely on national coordination
Isaac Eckert
Andrea Brown
Dominique Caron
Federico Riva
30×30 biodiversity gains rely on national coordination
Isaac Eckert
Andrea Brown
Dominique Caron
Federico Riva