Portrait of Hugo Larochelle

Hugo Larochelle

Core Industry Member
Canada CIFAR AI Chair
Adjunct professor, Université de Montréal, Depatment of Computer Science and Operations Research
Research Scientist, Google DeepMind
Research Topics
Deep Learning

Biography

I am a researcher in the Google DeepMind (previously Google Brain) team in Montréal, an adjunct professor at Université de Montréal, and a Canada CIFAR AI Chair. My research focuses on the study and development of deep learning algorithms.

Current Students

PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :

Publications

Learning a Universal Template for Few-shot Dataset Generalization
Eleni Triantafillou
Richard Zemel
Vincent Dumoulin
A Unified Few-Shot Classification Benchmark to Compare Transfer and Meta Learning Approaches
Vincent Dumoulin
Neil Houlsby
Utku Evci
Xiaohua Zhai
Ross Goroshin
Sylvain Gelly
Meta and transfer learning are two successful families of approaches to few-shot 1 learning. Despite highly related goals, state-of-the-art … (see more)advances in each family are 2 measured largely in isolation of each other. As a result of diverging evaluation 3 norms, a direct or thorough comparison of different approaches is challenging. 4 To bridge this gap, we introduce a few-shot classification evaluation protocol 5 named VTAB+MD with the explicit goal of facilitating sharing of insights from 6 each community. We demonstrate its accessibility in practice by performing a 7 cross-family study of the best transfer and meta learners which report on both a 8 large-scale meta-learning benchmark (Meta-Dataset, MD), and a transfer learning 9 benchmark (Visual Task Adaptation Benchmark, VTAB). We find that, on average, 10 large-scale transfer methods (Big Transfer, BiT) outperform competing approaches 11 on MD, even when trained only on ImageNet. In contrast, meta-learning approaches 12 struggle to compete on VTAB when trained and validated on MD. However, BiT 13 is not without limitations, and pushing for scale does not improve performance 14 on highly out-of-distribution MD tasks. We hope that this work contributes to 15 accelerating progress on few-shot learning research. 16
A Universal Representation Transformer Layer for Few-Shot Image Classification
Lu Liu
William Hamilton
Guodong Long
Jing Jiang
Few-shot classification aims to recognize unseen classes when presented with only a small number of samples. We consider the problem of mult… (see more)i-domain few-shot image classification, where unseen classes and examples come from diverse data sources. This problem has seen growing interest and has inspired the development of benchmarks such as Meta-Dataset. A key challenge in this multi-domain setting is to effectively integrate the feature representations from the diverse set of training domains. Here, we propose a Universal Representation Transformer (URT) layer, that meta-learns to leverage universal features for few-shot classification by dynamically re-weighting and composing the most appropriate domain-specific representations. In experiments, we show that URT sets a new state-of-the-art result on Meta-Dataset. Specifically, it achieves top-performance on the highest number of data sources compared to competing methods. We analyze variants of URT and present a visualization of the attention score heatmaps that sheds light on how the model performs cross-domain generalization.
Revisiting Fundamentals of Experience Replay
William Fedus
Prajit Ramachandran
Rishabh Agarwal
Mark Rowland
Will Dabney
Experience replay is central to off-policy algorithms in deep reinforcement learning (RL), but there remain significant gaps in our understa… (see more)nding. We therefore present a systematic and extensive analysis of experience replay in Q-learning methods, focusing on two fundamental properties: the replay capacity and the ratio of learning updates to experience collected (replay ratio). Our additive and ablative studies upend conventional wisdom around experience replay -- greater capacity is found to substantially increase the performance of certain algorithms, while leaving others unaffected. Counterintuitively we show that theoretically ungrounded, uncorrected n-step returns are uniquely beneficial while other techniques confer limited benefit for sifting through larger memory. Separately, by directly controlling the replay ratio we contextualize previous observations in the literature and empirically measure its importance across a variety of deep RL algorithms. Finally, we conclude by testing a set of hypotheses on the nature of these performance benefits.
An Effective Anti-Aliasing Approach for Residual Networks
Cristina Vasconcelos
Vincent Dumoulin
Ross Goroshin
Image pre-processing in the frequency domain has traditionally played a vital role in computer vision and was even part of the standard pipe… (see more)line in the early days of deep learning. However, with the advent of large datasets, many practitioners concluded that this was unnecessary due to the belief that these priors can be learned from the data itself. Frequency aliasing is a phenomenon that may occur when sub-sampling any signal, such as an image or feature map, causing distortion in the sub-sampled output. We show that we can mitigate this effect by placing non-trainable blur filters and using smooth activation functions at key locations, particularly where networks lack the capacity to learn them. These simple architectural changes lead to substantial improvements in out-of-distribution generalization on both image classification under natural corruptions on ImageNet-C [10] and few-shot learning on Meta-Dataset [17], without introducing additional trainable parameters and using the default hyper-parameters of open source codebases.
Language GANs Falling Short
Massimo Caccia
Lucas Caccia
William Fedus
Generating high-quality text with sufficient diversity is essential for a wide range of Natural Language Generation (NLG) tasks. Maximum-Lik… (see more)elihood (MLE) models trained with teacher forcing have consistently been reported as weak baselines, where poor performance is attributed to exposure bias (Bengio et al., 2015; Ranzato et al., 2015); at inference time, the model is fed its own prediction instead of a ground-truth token, which can lead to accumulating errors and poor samples. This line of reasoning has led to an outbreak of adversarial based approaches for NLG, on the account that GANs do not suffer from exposure bias. In this work, we make several surprising observations which contradict common beliefs. First, we revisit the canonical evaluation framework for NLG, and point out fundamental flaws with quality-only evaluation: we show that one can outperform such metrics using a simple, well-known temperature parameter to artificially reduce the entropy of the model's conditional distributions. Second, we leverage the control over the quality / diversity trade-off given by this parameter to evaluate models over the whole quality-diversity spectrum and find MLE models constantly outperform the proposed GAN variants over the whole quality-diversity space. Our results have several implications: 1) The impact of exposure bias on sample quality is less severe than previously thought, 2) temperature tuning provides a better quality / diversity trade-off than adversarial training while being easier to train, easier to cross-validate, and less computationally expensive. Code to reproduce the experiments is available at github.com/pclucas14/GansFallingShort
Learning Graph Structure With A Finite-State Automaton Layer
Daniel D. Johnson
Danny Tarlow