Portrait of Hugo Larochelle

Hugo Larochelle

Core Industry Member
Canada CIFAR AI Chair
Adjunct professor, Université de Montréal, Depatment of Computer Science and Operations Research
Research Scientist, Google DeepMind
Research Topics
Deep Learning

Biography

I am a researcher in the Google DeepMind (previously Google Brain) team in Montréal, an adjunct professor at Université de Montréal, and a Canada CIFAR AI Chair. My research focuses on the study and development of deep learning algorithms.

Current Students

PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :

Publications

Unlearning via Sparse Representations
Vedant Shah
Frederik Träuble
Ashish Malik
Michael Curtis Mozer
Sanjeev Arora
Anirudh Goyal
Unlearning via Sparse Representations
Vedant Shah
Frederik Träuble
Ashish Malik
Michael Curtis Mozer
Sanjeev Arora
Anirudh Goyal
Machine \emph{unlearning}, which involves erasing knowledge about a \emph{forget set} from a trained model, can prove to be costly and infea… (see more)sible by existing techniques. We propose a nearly compute-free zero-shot unlearning technique based on a discrete representational bottleneck. We show that the proposed technique efficiently unlearns the forget set and incurs negligible damage to the model's performance on the rest of the data set. We evaluate the proposed technique on the problem of \textit{class unlearning} using three datasets: CIFAR-10, CIFAR-100, and LACUNA-100. We compare the proposed technique to SCRUB, a state-of-the-art approach which uses knowledge distillation for unlearning. Across all three datasets, the proposed technique performs as well as, if not better than SCRUB while incurring almost no computational cost.
SatBird: Bird Species Distribution Modeling with Remote Sensing and Citizen Science Data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Hager Radi
Biodiversity is declining at an unprecedented rate, impacting ecosystem services necessary to ensure food, water, and human health and well-… (see more)being. Understanding the distribution of species and their habitats is crucial for conservation policy planning. However, traditional methods in ecology for species distribution models (SDMs) generally focus either on narrow sets of species or narrow geographical areas and there remain significant knowledge gaps about the distribution of species. A major reason for this is the limited availability of data traditionally used, due to the prohibitive amount of effort and expertise required for traditional field monitoring. The wide availability of remote sensing data and the growing adoption of citizen science tools to collect species observations data at low cost offer an opportunity for improving biodiversity monitoring and enabling the modelling of complex ecosystems. We introduce a novel task for mapping bird species to their habitats by predicting species encounter rates from satellite images, and present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird, considering summer (breeding) and winter seasons. We also provide a dataset in Kenya representing low-data regimes. We additionally provide environmental data and species range maps for each location. We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks. SatBird opens up possibilities for scalably modelling properties of ecosystems worldwide.
SatBird: a Dataset for Bird Species Distribution Modeling using Remote Sensing and Citizen Science Data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Hager Radi
Neural Causal Structure Discovery from Interventions
Nan Rosemary Ke
Olexa Bilaniuk
Anirudh Goyal
Stefan Bauer
Bernhard Schölkopf
Michael Curtis Mozer
Recent promising results have generated a surge of interest in continuous optimization methods for causal discovery from observational data.… (see more) However, there are theoretical limitations on the identifiability of underlying structures obtained solely from observational data. Interventional data, on the other hand, provides richer information about the underlying data-generating process. Nevertheless, extending and applying methods designed for observational data to include interventions is a challenging problem. To address this issue, we propose a general framework based on neural networks to develop models that incorporate both observational and interventional data. Notably, our method can handle the challenging and realistic scenario where the identity of the intervened upon variable is unknown. We evaluate our proposed approach in the context of graph recovery, both de novo and from a partially-known edge set. Our method achieves strong benchmark results on various structure learning tasks, including structure recovery of synthetic graphs as well as standard graphs from the Bayesian Network Repository.
Bird Distribution Modelling using Remote Sensing and Citizen Science data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Repository-Level Prompt Generation for Large Language Models of Code
Disha Shrivastava
Danny Tarlow
With the success of large language models (LLMs) of code and their use as code assistants (e.g. Codex used in GitHub Copilot), techniques fo… (see more)r introducing domain-specific knowledge in the prompt design process become important. In this work, we propose a framework called Repo-Level Prompt Generator that learns to generate example-specific prompts using prompt proposals. The prompt proposals take context from the entire repository, thereby incorporating both the structure of the repository and the context from other relevant files (e.g. imports, parent class files). Our technique doesn't require any access to the weights of the LLM, making it applicable in cases where we only have black-box access to the LLM. We conduct experiments on the task of single-line code auto-completion using code repositories taken from Google Code archives. We demonstrate that an oracle constructed from our prompt proposals gives a relative improvement of 36% over Codex, showing the quality of these proposals. Further, we show that when we train a model to predict a prompt proposal, we can achieve significant performance gains over Codex and other baselines. We release our code, data, and trained checkpoints at: https://github.com/shrivastavadisha/repo_level_prompt_generation.
Static Prediction of Runtime Errors by Learning to Execute Programs with External Resource Descriptions
David Bieber
Rishab Goel
Dan Zheng
Daniel Tarlow
The execution behavior of a program often depends on external resources, such as program inputs or file contents, and so cannot be run in is… (see more)olation. Nevertheless, software developers benefit from fast iteration loops where automated tools identify errors as early as possible, even before programs can be compiled and run. This presents an interesting machine learning challenge: can we predict runtime errors in a"static"setting, where program execution is not possible? Here, we introduce a real-world dataset and task for predicting runtime errors, which we show is difficult for generic models like Transformers. We approach this task by developing an interpreter-inspired architecture with an inductive bias towards mimicking program executions, which models exception handling and"learns to execute"descriptions of the contents of external resources. Surprisingly, we show that the model can also predict the location of the error, despite being trained only on labels indicating the presence/absence and kind of error. In total, we present a practical and difficult-yet-approachable challenge problem related to learning program execution and we demonstrate promising new capabilities of interpreter-inspired machine learning models for code.
Neural Causal Structure Discovery from Interventions
Nan Rosemary Ke
Olexa Bilaniuk
Anirudh Goyal
Stefan Bauer
Bernhard Schölkopf
Michael Curtis Mozer
Recent promising results have generated a surge of interest in continuous optimization methods for causal discovery from observational data.… (see more) However, there are theoretical limitations on the identifiability of underlying structures obtained solely from observational data. Interventional data, on the other hand, provides richer information about the underlying data-generating process. Nevertheless, extending and applying methods designed for observational data to include interventions is a challenging problem. To address this issue, we propose a general framework based on neural networks to develop models that incorporate both observational and interventional data. Notably, our method can handle the challenging and realistic scenario where the identity of the intervened upon variable is unknown. We evaluate our proposed approach in the context of graph recovery, both de novo and from a partially-known edge set. Our method achieves strong benchmark results on various structure learning tasks, including structure recovery of synthetic graphs as well as standard graphs from the Bayesian Network Repository
Survey of Scientific Rigor Studied in Machine Learning
D. Sculley
Gary R. Holt
Daniel R. Golovin
Eugene V. Davydov
Todd Phillips
Dietmar Ebner
Michael Young
Jean-francois Crespo
Dan Dennison
Emily Fox
The concern that Artificial Intelligence (AI) and Machine Learning (ML) are entering a “reproducibility crisis” has spurred significant … (see more)research in the past few years. Yet with each paper, it is often unclear what someone means by “reproducibility” and where it fits in the larger scope of what we will call the “scientific rigor” literature. Ultimately, the lack of clear rigor standards can affect the manner in which businesses seeking to adopt AI/ML implement such capabilities. In this survey, we will use 66 papers published since 2017 to construct a proposed set of 8 high-level categories of scientific rigor, what they are, and the history of work conducted in each. Our proposal is that these eight rigor types are not mutually exclusive and present a model for how they influence each other. To encourage more to study these questions, we map these rigors to the adoption process in real-world business use cases. In doing so, we can quantify gaps in the literature that suggest an under focus on the issues necessary for scientific rigor research to transition to practice
Teaching Algorithmic Reasoning via In-context Learning
Hattie Zhou
Azade Nova
Behnam Neyshabur
Hanie Sedghi
Head2Toe: Utilizing Intermediate Representations for Better Transfer Learning
Utku Evci
Vincent Dumoulin
Michael Curtis Mozer