Portrait of Vineet Jain is unavailable

Vineet Jain

PhD - McGill University


On Diffusion Modeling for Anomaly Detection
Victor Livernoche
Vineet Jain
Known for their impressive performance in generative modeling, diffusion models are attractive candidates for density-based anomaly detectio… (see more)n. This paper investigates different variations of diffusion modeling for unsupervised and semi-supervised anomaly detection. In particular, we find that Denoising Diffusion Probability Models (DDPM) are performant on anomaly detection benchmarks yet computationally expensive. By simplifying DDPM in application to anomaly detection, we are naturally led to an alternative approach called Diffusion Time Estimation (DTE). DTE estimates the distribution over diffusion time for a given input and uses the mode or mean of this distribution as the anomaly score. We derive an analytical form for this density and leverage a deep neural network to improve inference efficiency. Through empirical evaluations on the ADBench benchmark, we demonstrate that all diffusion-based anomaly detection methods perform competitively for both semi-supervised and unsupervised settings. Notably, DTE achieves orders of magnitude faster inference time than DDPM, while outperforming it on this benchmark. These results establish diffusion-based anomaly detection as a scalable alternative to traditional methods and recent deep-learning techniques for standard unsupervised and semi-supervised anomaly detection settings.
Learning to Reach Goals via Diffusion
Vineet Jain
We present a novel perspective on goal-conditioned reinforcement learning by framing it within the context of denoising diffusion models. An… (see more)alogous to the diffusion process, where Gaussian noise is used to create random trajectories that walk away from the data manifold, we construct trajectories that move away from potential goal states. We then learn a goal-conditioned policy to reverse these deviations, analogously to the score function. This approach, which we call Merlin, can reach specified goals from an arbitrary initial state without learning a separate value function. In contrast to recent works utilizing diffusion models in offline RL, Merlin stands out as the first method to perform diffusion in the state space, requiring only one ``denoising"iteration per environment step. We experimentally validate our approach in various offline goal-reaching tasks, demonstrating substantial performance enhancements compared to state-of-the-art methods while improving computational efficiency over other diffusion-based RL methods by an order of magnitude. Our results suggest that this perspective on diffusion for RL is a simple, scalable, and practical direction for sequential decision making.