Publications

Str2Str: A Score-based Framework for Zero-shot Protein Conformation Sampling
Jiarui Lu
Bozitao Zhong
Zuobai Zhang
Sufficient conditions for offline reactivation in recurrent neural networks
Nanda H Krishna
Colin Bredenberg
Daniel Levenstein
During periods of quiescence, such as sleep, neural activity in many brain circuits resembles that observed during periods of task engagemen… (see more)t. However, the precise conditions under which task-optimized networks can autonomously reactivate the same network states responsible for online behavior is poorly understood. In this study, we develop a mathematical framework that outlines sufficient conditions for the emergence of neural reactivation in circuits that encode features of smoothly varying stimuli. We demonstrate mathematically that noisy recurrent networks optimized to track environmental state variables using change-based sensory information naturally develop denoising dynamics, which, in the absence of input, cause the network to revisit state configurations observed during periods of online activity. We validate our findings using numerical experiments on two canonical neuroscience tasks: spatial position estimation based on self-motion cues, and head direction estimation based on angular velocity cues. Overall, our work provides theoretical support for modeling offline reactivation as an emergent consequence of task optimization in noisy neural circuits.
Synaptic Weight Distributions Depend on the Geometry of Plasticity
Roman Pogodin
Jonathan Cornford
Arna Ghosh
A growing literature in computational neuroscience leverages gradient descent and learning algorithms that approximate it to study synaptic … (see more)plasticity in the brain. However, the vast majority of this work ignores a critical underlying assumption: the choice of distance for synaptic changes - i.e. the geometry of synaptic plasticity. Gradient descent assumes that the distance is Euclidean, but many other distances are possible, and there is no reason that biology necessarily uses Euclidean geometry. Here, using the theoretical tools provided by mirror descent, we show that the distribution of synaptic weights will depend on the geometry of synaptic plasticity. We use these results to show that experimentally-observed log-normal weight distributions found in several brain areas are not consistent with standard gradient descent (i.e. a Euclidean geometry), but rather with non-Euclidean distances. Finally, we show that it should be possible to experimentally test for different synaptic geometries by comparing synaptic weight distributions before and after learning. Overall, our work shows that the current paradigm in theoretical work on synaptic plasticity that assumes Euclidean synaptic geometry may be misguided and that it should be possible to experimentally determine the true geometry of synaptic plasticity in the brain.
TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
We introduce a new model for multivariate probabilistic time series prediction, designed to flexibly address a range of tasks including fore… (see more)casting, interpolation, and their combinations. Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS), wherein the number of distributional parameters now scales linearly with the number of variables instead of factorially. The new objective requires the introduction of a training curriculum, which goes hand-in-hand with necessary changes to the original architecture. We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks, while maintaining the flexibility of prior work, such as seamless handling of unaligned and unevenly-sampled time series. Code is made available at https://github.com/ServiceNow/TACTiS.
The Cost of Scaling Down Large Language Models: Reducing Model Size Affects Memory before In-context Learning
Tian Jin
Nolan Clement
Xin Dong
Vaishnavh Nagarajan
Michael Carbin
Jonathan Ragan-Kelley
We study how down-scaling large language model (LLM) size impacts LLM capabilities. We begin by measuring the effects of weight pruning – … (see more)a popular technique for reducing model size – on the two abilities of LLMs: (a) recalling facts presented during pre-training and (b) processing information presented in context. Surprisingly, we find that existing pruning techniques affect these two abilities of LLMs differently. For example, pruning more than 30% of weights significantly decreases an LLM’s ability to recall facts presented during pre-training. Yet pruning 60-70% of weights largely preserves an LLM’s ability to process information in-context, ranging from retrieving answers based on information presented in context to learning parameterized functions such as a linear classifier based on a few examples. Moderate pruning impairs LLM’s ability to recall facts learnt from pre-training. However, its effect on model’s ability to process information presented in context is much less pronounced. The said disparate effects similarly arise when replacing the original model with a smaller dense one with reduced width and depth. This similarity suggests that model size reduction in general underpins the said disparity.
The Curse of Diversity in Ensemble-Based Exploration
Zhixuan Lin
Pierluca D'Oro
Evgenii Nikishin
We uncover a surprising phenomenon in deep reinforcement learning: training a diverse ensemble of data-sharing agents -- a well-established … (see more)exploration strategy -- can significantly impair the performance of the individual ensemble members when compared to standard single-agent training. Through careful analysis, we attribute the degradation in performance to the low proportion of self-generated data in the shared training data for each ensemble member, as well as the inefficiency of the individual ensemble members to learn from such highly off-policy data. We thus name this phenomenon *the curse of diversity*. We find that several intuitive solutions -- such as a larger replay buffer or a smaller ensemble size -- either fail to consistently mitigate the performance loss or undermine the advantages of ensembling. Finally, we demonstrate the potential of representation learning to counteract the curse of diversity with a novel method named Cross-Ensemble Representation Learning (CERL) in both discrete and continuous control domains. Our work offers valuable insights into an unexpected pitfall in ensemble-based exploration and raises important caveats for future applications of similar approaches.
On the Stability of Iterative Retraining of Generative Models on their own Data
Quentin Bertrand
Joey Bose
Alexandre Duplessis
Marco Jiralerspong
Deep generative models have made tremendous progress in modeling complex data, often exhibiting generation quality that surpasses a typical … (see more)human's ability to discern the authenticity of samples. Undeniably, a key driver of this success is enabled by the massive amounts of web-scale data consumed by these models. Due to these models' striking performance and ease of availability, the web will inevitably be increasingly populated with synthetic content. Such a fact directly implies that future iterations of generative models will be trained on both clean and artificially generated data from past models. In this paper, we develop a framework to rigorously study the impact of training generative models on mixed datasets---from classical training on real data to self-consuming generative models trained on purely synthetic data. We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough and the proportion of clean training data (w.r.t. synthetic data) is large enough. We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.
Towards Foundation Models for Knowledge Graph Reasoning
Mikhail Galkin
Xinyu Yuan
Hesham Mostafa
Zhaocheng Zhu
Foundation models in language and vision have the ability to run inference on any textual and visual inputs thanks to the transferable repre… (see more)sentations such as a vocabulary of tokens in language. Knowledge graphs (KGs) have different entity and relation vocabularies that generally do not overlap. The key challenge of designing foundation models on KGs is to learn such transferable representations that enable inference on any graph with arbitrary entity and relation vocabularies. In this work, we make a step towards such foundation models and present ULTRA, an approach for learning universal and transferable graph representations. ULTRA builds relational representations as a function conditioned on their interactions. Such a conditioning strategy allows a pre-trained ULTRA model to inductively generalize to any unseen KG with any relation vocabulary and to be fine-tuned on any graph. Conducting link prediction experiments on 57 different KGs, we find that the zero-shot inductive inference performance of a single pre-trained ULTRA model on unseen graphs of various sizes is often on par or better than strong baselines trained on specific graphs. Fine-tuning further boosts the performance.
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Shenyang Huang
Joao Alex Cunha
Zhiyi Li
Gabriela Moisescu-Pareja
Oleksandr Dymov
Samuel Maddrell-Mander
Callum McLean
Frederik Wenkel
Luis Müller
Jama Hussein Mohamud
Ali Parviz
Michael Craig
Michał Koziarski
Jiarui Lu
Zhaocheng Zhu
Cristian Gabellini
Kerstin Klaser
Josef Dean
Cas Wognum … (see 15 more)
Maciej Sypetkowski
Christopher Morris
Ioannis Koutis
Prudencio Tossou
Hadrien Mary
Therence Bois
Andrew William Fitzgibbon
Blazej Banaszewski
Chad Martin
Dominic Masters
Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, wh… (see more)ere datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks. The Graphium library is publicly available on Github and the dataset links are available in Part 1 and Part 2.
Tree Cross Attention
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
Cross Attention is a popular method for retrieving information from a set of context tokens for making predictions. At inference time, for e… (see more)ach prediction, Cross Attention scans the full set of
Würstchen: An Efficient Architecture for Large-Scale Text-to-Image Diffusion Models
Pablo Pernias
Dominic Rampas
Mats Leon Richter
Marc Aubreville
BCG immunization induces CX3CR1hi effector memory T cells to provide cross-protection via IFN-γ-mediated trained immunity.
Kim A. Tran
Erwan Pernet
Mina Sadeghi
Jeffrey Downey
Julia Chronopoulos
Elizabeth Lapshina
Oscar Tsai
Eva Kaufmann
Maziar Divangahi