Delivered in partnership with Indspire, this tailored career pathway is designed to empower Indigenous talent to learn, develop, and lead the evolution of AI. Applications for the 2025 program are open until January 31st.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Stimulus information guides the emergence of behavior-related signals in primary somatosensory cortex during learning.
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial tra… (see more)ining has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
We aimed to identify neural computations underlying the loss of face identification ability by modelling the brain activity of brain-lesione… (see more)d patient PS, a well-documented case of acquired pure prosopagnosia. We collected a large dataset of high-density electrophysiological (EEG) recordings from PS and neurotypicals while they completed a one-back task on a stream of face, object, animal and scene images. We found reduced neural decoding of face identity around the N170 window in PS, and conjointly revealed normal non-face identification in this patient. We used Representational Similarity Analysis (RSA) to correlate human EEG representations with those of deep neural network (DNN) models of vision and caption-level semantics, offering a window into the neural computations at play in patient PS’s deficits. Brain representational dissimilarity matrices (RDMs) were computed for each participant at 4 ms steps using cross-validated classifiers. PS’s brain RDMs showed significant reliability across sessions, indicating meaningful measurements of brain representations with RSA even in the presence of significant lesions. Crucially, computational analyses were able to reveal PS’s representational deficits in high-level visual and semantic brain computations. Such multi-modal data-driven characterisations of prosopagnosia highlight the complex nature of processes contributing to face recognition in the human brain. Highlights We assess the neural computations in the prosopagnosic patient PS using EEG, RSA, and deep neural networks Neural dynamics of brain-lesioned PS are reliably captured using RSA Neural decoding shows normal evidence for non-face individuation in PS Neural decoding shows abnormal neural evidence for face individuation in PS PS shows impaired high-level visual and semantic neural computations
The optimal model for a given task is often challenging to determine, requiring training multiple models from scratch which becomes prohibit… (see more)ive as dataset and model sizes grow. A more efficient alternative is to reuse smaller pre-trained models by expanding them, however, this is not widely adopted as how this impacts training dynamics remains poorly understood. While prior works have introduced statistics to measure these effects, they remain flawed. To rectify this, we offer a new approach for understanding and quantifying the impact of expansion through the lens of the loss landscape, which has been shown to contain a manifold of linearly connected minima. Building on this new perspective, we propose a metric to study the impact of expansion by estimating the size of the manifold. Experimental results show a clear relationship between gains in performance and manifold size, enabling the comparison of candidate models and presenting a first step towards expanding models more reliably based on geometric properties of the loss landscape.
Defect reduction planning plays a vital role in enhancing software quality and minimizing software maintenance costs. By training a black bo… (see more)x machine learning model and"explaining"its predictions, explainable AI for software engineering aims to identify the code characteristics that impact maintenance risks. However, post-hoc explanations do not always faithfully reflect what the original model computes. In this paper, we introduce CounterACT, a Counterfactual ACTion rule mining approach that can generate defect reduction plans without black-box models. By leveraging action rules, CounterACT provides a course of action that can be considered as a counterfactual explanation for the class (e.g., buggy or not buggy) assigned to a piece of code. We compare the effectiveness of CounterACT with the original action rule mining algorithm and six established defect reduction approaches on 9 software projects. Our evaluation is based on (a) overlap scores between proposed code changes and actual developer modifications; (b) improvement scores in future releases; and (c) the precision, recall, and F1-score of the plans. Our results show that, compared to competing approaches, CounterACT's explainable plans achieve higher overlap scores at the release level (median 95%) and commit level (median 85.97%), and they offer better trade-off between precision and recall (median F1-score 88.12%). Finally, we venture beyond planning and explore leveraging Large Language models (LLM) for generating code edits from our generated plans. Our results show that suggested LLM code edits supported by our plans are actionable and are more likely to pass relevant test cases than vanilla LLM code recommendations.
BACKGROUND
In radiotherapy, it is essential to deliver prescribed doses to tumors while minimizing damage to surrounding healthy tissue. Acc… (see more)urate measurements of absorbed dose are required for this purpose. Gafchromic® external beam therapy (EBT) radiochromic films have been widely used in radiotherapy. While the dosimetric characteristics of the EBT3 model film have been extensively studied for photon and charged particle beams (protons, electrons, and carbon ions), little research has been done on α
Neural networks have demonstrably achieved state-of-the art accuracy using low-bitlength integer quantization, yielding both execution time … (see more)and energy benefits on existing hardware designs that support short bitlengths. However, the question of finding the minimum bitlength for a desired accuracy remains open. We introduce a training method for minimizing inference bitlength at any granularity while maintaining accuracy. Namely, we propose a regularizer that penalizes large bitlength representations throughout the architecture and show how it can be modified to minimize other quantifiable criteria, such as number of operations or memory footprint. We demonstrate that our method learns thrifty representations while maintaining accuracy. With ImageNet, the method produces an average per layer bitlength of 4.13, 3.76 and 4.36 bits on AlexNet, ResNet18 and MobileNet V2 respectively, remaining within 2.0%, 0.5% and 0.5% of the base TOP-1 accuracy.
2024-05-19
2024 IEEE International Symposium on Circuits and Systems (ISCAS) (published)