A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Privacy-Preserving Group Fairness in Cross-Device Federated Learning
Group fairness ensures that the outcome of machine learning (ML) based decision making systems are notbiased towards a certain group of peop… (see more)le defined by a sensitive attribute such as gender or ethnicity. Achievinggroup fairness in Federated Learning (FL) is challenging because mitigating bias inherently requires usingthe sensitive attribute values of all clients, while FL is aimed precisely at protecting privacy by not givingaccess to the clients’ data. As we show in this paper, this conflict between fairness and privacy in FL can beresolved by combining FL with Secure Multiparty Computation (MPC) and Differential Privacy (DP). Tothis end, we propose a privacy-preserving approach to calculate group fairness notions in the cross-device FLsetting. Then, we propose two bias mitigation pre-processing and post-processing techniques in cross-deviceFL under formal privacy guarantees, without requiring the clients to disclose their sensitive attribute values.Empirical evaluations on real world datasets demonstrate the effectiveness of our solution to train fair andaccurate ML models in federated cross-device setups with privacy guarantees to the users.
2025-04-23
Proceedings of the Algorithmic Fairness Through the Lens of Metrics and Evaluation (published)
Causal representation learning (CRL) enhances machine learning models' robustness and generalizability by learning structural causal models … (see more)associated with data-generating processes. We focus on a family of CRL methods that uses contrastive data pairs in the observable space, generated before and after a random, unknown intervention, to identify the latent causal model. (Brehmer et al., 2022) showed that this is indeed possible, given that all latent variables can be intervened on individually. However, this is a highly restrictive assumption in many systems. In this work, we instead assume interventions on arbitrary subsets of latent variables, which is more realistic. We introduce a theoretical framework that calculates the degree to which we can identify a causal model, given a set of possible interventions, up to an abstraction that describes the system at a higher level of granularity.
2025-04-23
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics (published)
BACKGROUND
The social stigma of families of children living with colostomies due to anorectal malformation (ARM) is significant in low-incom… (see more)e countries (LICs). Improved access to pediatric surgery has resulted in more 1-stage ARM procedures in Southwestern Uganda, avoiding colostomy creation, but the impact on social stigma experienced by families is unknown. We hypothesized that this change would decrease the social stigma experienced by families.
METHODS
A single-center mixed retrospective and prospective cohort study with combined qualitative data of families of children with ARM who underwent corrective surgery compared the stigma experienced by those with colostomies to those without. The Kilifi Stigma Scale of Epilepsy (KSSE) was used to assess social stigma. Multivariable regression analysis assessed differences in the stigma experienced, controlling for age at diagnosis, rurality, distance traveled, sex, and parental education. Subgroup analysis assessed the impact of colostomy duration on stigma, stratified over parental education.
RESULTS
Patient/family dyads with 238 ARM were included; 177 (74%) received a colostomy. Most patients were male (51%), lived in rural areas (71%), and had parents with primary school education (65%). For those without a colostomy, the median KSSE was 0 (Q1-Q3 0-0), compared to 11 (Q1-Q3 3-20) for colostomy. On multivariable analysis, after controlling for age at diagnosis, rurality, distance traveled, sex, and parental education attainment, families of patients with ARM who received a colostomy had a median KSSE score 7.8 points higher than those who did not receive a colostomy (coefficient 7.78, 95% 3.14-12.43, and p = 0.001). When the duration of colostomy (in years) was examined, the median KSSE score increased by 1.58 points for each additional year for a patient who had a colostomy (IRR 1.58, 95% CI: 0.76-2.40, and p 0.001).
CONCLUSION
Adopting a 1-stage ARM repair for the select types, which avoids colostomy creation, significantly reduces the exper