Speaker Recognition from Raw Waveform with SincNet
Deep learning is progressively gaining popularity as a viable alternative to i-vectors for speaker recognition. Promising results have been … (see more)recently obtained with Convolutional Neural Networks (CNNs) when fed by raw speech samples directly. Rather than employing standard hand-crafted features, the latter CNNs learn low-level speech representations from waveforms, potentially allowing the network to better capture important narrow-band speaker characteristics such as pitch and formants. Proper design of the neural network is crucial to achieve this goal.This paper proposes a novel CNN architecture, called SincNet, that encourages the first convolutional layer to discover more meaningful filters. SincNet is based on parametrized sinc functions, which implement band-pass filters. In contrast to standard CNNs, that learn all elements of each filter, only low and high cutoff frequencies are directly learned from data with the proposed method. This offers a very compact and efficient way to derive a customized filter bank specifically tuned for the desired application.Our experiments, conducted on both speaker identification and speaker verification tasks, show that the proposed architecture converges faster and performs better than a standard CNN on raw waveforms.
Object Detection using Deep Learning
Chamarty Anusha
P. Avadhani
P. S.
Mohannad Elhamod
Martin D. Levine
Ajeet Ram Pathak
Manjusha Pandey
Siddharth S. Rautaray
Christian Szegedy
Alexander T Toshev
Dumitru Erhan
Xiaofeng Ning
Wen Zhu
Shifeng Chen
Zhong-Qiu Zhao
Peng Zheng
Shou-tao Xu
Xindong Wu
Sakshi Indolia
Anil Kumar Goswani … (see 12 more)
S. P. Mishra
Pooja Asopa
Yann LeCun
Joseph Redmon
Santosh Kumar Divvala
Ross Girshick
Ali Farhadi
M. Kruithof
Henri Bouma
Noelle M. Fischer
Klamer Schutte
Autonomous vehicles, surveillance systems, face detection systems lead to the development of accurate object detection system [1]. These sys… (see more)tems recognize, classify and localize every object in an image by drawing bounding boxes around the object [2]. These systems use existing classification models as backbone for Object Detection purpose. Object detection is the process of finding instances of real-world objects such as human faces, animals and vehicles etc., in pictures, images or in videos. An Object detection algorithm uses extracted features and learning techniques to recognize the objects in an image. In this paper, various Object Detection techniques have been studied and some of them are implemented. As a part of this paper, three algorithms for object detection in an image were implemented and their results were compared. The algorithms are “Object Detection using Deep Learning Framework by OpenCV”, “Object Detection using Tensorflow” and “Object Detection using Keras models”.
Speech and Speaker Recognition from Raw Waveform with SincNet
Deep neural networks can learn complex and abstract representations, that are progressively obtained by combining simpler ones. A recent tre… (see more)nd in speech and speaker recognition consists in discovering these representations starting from raw audio samples directly. Differently from standard hand-crafted features such as MFCCs or FBANK, the raw waveform can potentially help neural networks discover better and more customized representations. The high-dimensional raw inputs, however, can make training significantly more challenging. This paper summarizes our recent efforts to develop a neural architecture that efficiently processes speech from audio waveforms. In particular, we propose SincNet, a novel Convolutional Neural Network (CNN) that encourages the first layer to discover meaningful filters by exploiting parametrized sinc functions. In contrast to standard CNNs, which learn all the elements of each filter, only low and high cutoff frequencies of band-pass filters are directly learned from data. This inductive bias offers a very compact way to derive a customized front-end, that only depends on some parameters with a clear physical meaning. Our experiments, conducted on both speaker and speech recognition, show that the proposed architecture converges faster, performs better, and is more computationally efficient than standard CNNs.
The effects of negative adaptation in Model-Agnostic Meta-Learning
Tristan Deleu
The capacity of meta-learning algorithms to quickly adapt to a variety of tasks, including ones they did not experience during meta-training… (see more), has been a key factor in the recent success of these methods on few-shot learning problems. This particular advantage of using meta-learning over standard supervised or reinforcement learning is only well founded under the assumption that the adaptation phase does improve the performance of our model on the task of interest. However, in the classical framework of meta-learning, this constraint is only mildly enforced, if not at all, and we only see an improvement on average over a distribution of tasks. In this paper, we show that the adaptation in an algorithm like MAML can significantly decrease the performance of an agent in a meta-reinforcement learning setting, even on a range of meta-training tasks.
Recurrent transition networks for character locomotion
Félix Harvey
We present a novel approach, based on deep recurrent neural networks, to automatically generate transition animations given a past context o… (see more)f a few frames, a target character state and optionally local terrain information. The proposed Recurrent Transition Network (RTN) is trained without any gait, phase, contact or action labels. Our system produces realistic and fluid transitions that rival the quality of Motion Capture-based animations, even without any inverse-kinematics post-process. Our system could accelerate the creation of transition variations for large coverage or even replace transition nodes in a game's animation graph. The RTN also shows impressive results on a temporal super-resolution task.
Deep Learning recognizes weather and climate patterns
Karthik Kashinath
M. Prabhat
Mayur Mudigonda
Ankur Mahesh
Sookyung Kim
Yunjie Liu
B. Toms
Evan Racah
Christopher Beckham
Jim Biard
K. Kunkel
Dean Nesbit Williams
Travis O'Brien
M. Wehner
W. Collins
Learning Typed Entailment Graphs with Global Soft Constraints
Mohammad Javad Hosseini
Nathanael Chambers
Xavier R. Holt
Shay B. Cohen
Mark Johnson
Mark Steedman
This paper presents a new method for learning typed entailment graphs from text. We extract predicate-argument structures from multiple-sour… (see more)ce news corpora, and compute local distributional similarity scores to learn entailments between predicates with typed arguments (e.g., person contracted disease). Previous work has used transitivity constraints to improve local decisions, but these constraints are intractable on large graphs. We instead propose a scalable method that learns globally consistent similarity scores based on new soft constraints that consider both the structures across typed entailment graphs and inside each graph. Learning takes only a few hours to run over 100K predicates and our results show large improvements over local similarity scores on two entailment data sets. We further show improvements over paraphrases and entailments from the Paraphrase Database, and prior state-of-the-art entailment graphs. We show that the entailment graphs improve performance in a downstream task.
Contextual Bandits for Adapting Treatment in a Mouse Model of de Novo Carcinogenesis
Charis Achilleos
Demetris C Iacovides
Katerina Strati
Georgios D. Mitsis
In this work, we present a specific case study where we aim to design effective treatment allocation strategies and validate these using a m… (see more)ouse model of skin cancer. Collecting data for modelling treatments effectiveness on animal models is an expensive and time consuming process. Moreover, acquiring this information during the full range of disease stages is hard to achieve with a conventional random treatment allocation procedure, as poor treatments cause deterioration of subject health. We therefore aim to design an adaptive allocation strategy to improve the efficiency of data collection by allocating more samples for exploring promising treatments. We cast this application as a contextual bandit problem and introduce a simple and practical algorithm for exploration-exploitation in this framework. The work builds on a recent class of approaches for non-contextual bandits that relies on subsampling to compare treatment options using an equivalent amount of information. On the technical side, we extend the subsampling strategy to the case of bandits with context, by applying subsampling within Gaussian Process regression. On the experimental side, preliminary results using 10 mice with skin tumours suggest that the proposed approach extends by more than 50% the subjects life duration compared with baseline strategies: no treatment, random treatment allocation, and constant chemotherapeutic agent. By slowing the tumour growth rate, the adaptive procedure gathers information about treatment effectiveness on a broader range of tumour volumes, which is crucial for eventually deriving sequential pharmacological treatment strategies for cancer.
Understanding the impact of entropy in policy learning
Zafarali Ahmed
Mohammad Norouzi
Dale Schuurmans
Entropy regularization is commonly used to improve policy optimization in reinforcement learning. It is believed to help with \emph{explorat… (see more)ion} by encouraging the selection of more stochastic policies. In this work, we analyze this claim using new visualizations of the optimization landscape based on randomly perturbing the loss function. We first show that even with access to the exact gradient, policy optimization is difficult due to the geometry of the objective function. Then, we qualitatively show that in some environments, a policy with higher entropy can make the optimization landscape smoother, thereby connecting local optima and enabling the use of larger learning rates. This paper presents new tools for understanding the optimization landscape, shows that policy entropy serves as a regularizer, and highlights the challenge of designing general-purpose policy optimization algorithms.
Environments for Lifelong Reinforcement Learning
To achieve general artificial intelligence, reinforcement learning (RL) agents should learn not only to optimize returns for one specific ta… (see more)sk but also to constantly build more complex skills and scaffold their knowledge about the world, without forgetting what has already been learned. In this paper, we discuss the desired characteristics of environments that can support the training and evaluation of lifelong reinforcement learning agents, review existing environments from this perspective, and propose recommendations for devising suitable environments in the future.
Multi-task Learning over Graph Structures
Pengfei Liu
Jie Fu
Yue Dong
Xipeng Qiu
We present two architectures for multi-task learning with neural sequence models. Our approach allows the relationships between different ta… (see more)sks to be learned dynamically, rather than using an ad-hoc pre-defined structure as in previous work. We adopt the idea from message-passing graph neural networks and propose a general \textbf{graph multi-task learning} framework in which different tasks can communicate with each other in an effective and interpretable way. We conduct extensive experiments in text classification and sequence labeling to evaluate our approach on multi-task learning and transfer learning. The empirical results show that our models not only outperform competitive baselines but also learn interpretable and transferable patterns across tasks.
Planning in Dynamic Environments with Conditional Autoregressive Models
Johanna Hansen
Kyle Kastner
We demonstrate the use of conditional autoregressive generative models (van den Oord et al., 2016a) over a discrete latent space (van den Oo… (see more)rd et al., 2017b) for forward planning with MCTS. In order to test this method, we introduce a new environment featuring varying difficulty levels, along with moving goals and obstacles. The combination of high-quality frame generation and classical planning approaches nearly matches true environment performance for our task, demonstrating the usefulness of this method for model-based planning in dynamic environments.