We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Concurrent prescriptions for opioids and benzodiazepines and risk of opioid overdose: protocol for a retrospective cohort study using linked administrative data
Collaboration among mobile devices (MDs) is becoming more important, as it could augment computing capacity at the network edge through peer… (see more)-to-peer service provisioning, and directly enhance real-time computational performance in smart Internet-of-Things applications. As an important aspect of collaboration mechanism, conventional resource trading (RT) among MDs relies on an onsite interaction process, i.e., price negotiation between service providers and requesters, which, however, inevitably incurs excessive latency and degrades RT efficiency. To overcome this challenge, this article adopts the concept of futures contract (FC) used in financial market, and proposes a smart futures for low latency RT. This new technique enables MDs to form trading coalitions and negotiate multilateral forward contracts applied to a collaboration term in the future. To maximize the benefits of self-interested MDs, the negotiation process of FC is modelled as a coalition formation game comprised of three components executed in an iterative manner, i.e., futures resource allocation, revenue sharing and payment allocation, and distributed decision-making of individual MD. Additionally, a FC enforcement scheme is implemented to efficiently manage the onsite resource sharing via recording resource balances of different task-types and MDs. Simulation results prove the superiority of smart futures in RT latency reduction and trading fairness provisioning.
2021-02-18
IEEE Transactions on Services Computing (published)
Collaboration among mobile devices (MDs) is becoming more important, as it could augment computing capacity at the network edge through peer… (see more)-to-peer service provisioning, and directly enhance real-time computational performance in smart Internet-of-Things applications. As an important aspect of collaboration mechanism, conventional resource trading (RT) among MDs relies on an onsite interaction process, i.e., price negotiation between service providers and requesters, which, however, inevitably incurs excessive latency and degrades RT efficiency. To overcome this challenge, this article adopts the concept of futures contract (FC) used in financial market, and proposes a smart futures for low latency RT. This new technique enables MDs to form trading coalitions and negotiate multilateral forward contracts applied to a collaboration term in the future. To maximize the benefits of self-interested MDs, the negotiation process of FC is modelled as a coalition formation game comprised of three components executed in an iterative manner, i.e., futures resource allocation, revenue sharing and payment allocation, and distributed decision-making of individual MD. Additionally, a FC enforcement scheme is implemented to efficiently manage the onsite resource sharing via recording resource balances of different task-types and MDs. Simulation results prove the superiority of smart futures in RT latency reduction and trading fairness provisioning.
2021-02-18
IEEE Transactions on Services Computing (published)
The parameters of a neural network are naturally organized in groups, some of which might not contribute to its overall performance. To prun… (see more)e out unimportant groups of parameters, we can include some non-differentiable penalty to the objective function, and minimize it using proximal gradient methods. In this paper, we derive the weighted proximal operator, which is a necessary component of these proximal methods, of two structured sparsity inducing penalties. Moreover, they can be approximated efficiently with a numerical solver, and despite this approximation, we prove that existing convergence guarantees are preserved when these operators are integrated as part of a generic adaptive proximal method. Finally, we show that this adaptive method, together with the weighted proximal operators derived here, is indeed capable of finding solutions with structure in their sparsity patterns, on representative examples from computer vision and natural language processing.
With increasing adoption of cloud services in the e-market, collaboration between stakeholders is easier than ever. Consumer stakeholders de… (see more)mand data from various sources to analyze trends and improve customer services. Data-as-a-service enables data integration to serve the demands of data consumers. However, the data must be of good quality and trustful for accurate analysis and effective decision making. In addition, a data custodian or provider must conform to privacy policies to avoid potential penalties for privacy breaches. To address these challenges, we propose a twofold solution: 1) we present the first information entropy-based trust computation algorithm, IEB_Trust, that allows a semitrusted arbitrator to detect the covert behavior of a dishonest data provider and chooses the qualified providers for a data mashup and 2) we incorporate the Vickrey–Clarke–Groves (VCG) auction mechanism for the valuation of data providers’ attributes into the data mashup process. Experiments on real-life data demonstrate the robustness of our approach in restricting dishonest providers from participation in the data mashup and improving the efficiency in comparison to provenance-based approaches. Furthermore, we derive the monetary shares for the chosen providers from their information utility and trust scores over the differentially private release of the integrated dataset under their joint privacy requirements.
2021-02-01
IEEE transactions on engineering management (published)