Feature-wise transformations
Vincent Dumoulin
Ethan Perez
Nathan Schucher
Florian Strub
Harm de Vries
MaD TwinNet: Masker-Denoiser Architecture with Twin Networks for Monaural Sound Source Separation
Konstantinos Drossos
Stylianos Ioannis Mimilakis
Dmitriy Serdyuk
Gerald Schuller
Tuomas Virtanen
Monaural singing voice separation task focuses on the prediction of the singing voice from a single channel music mixture signal. Current st… (see more)ate of the art (SOTA) results in monaural singing voice separation are obtained with deep learning based methods. In this work we present a novel recurrent neural approach that learns long-term temporal patterns and structures of a musical piece. We build upon the recently proposed Masker-Denoiser (MaD) architecture and we enhance it with the Twin Networks, a technique to regularize a recurrent generative network using a backward running copy of the network. We evaluate our method using the Demixing Secret Dataset and we obtain an increment to signal-to-distortion ratio (SDR) of 0.37 dB and to signal-to-interference ratio (SIR) of 0.23 dB, compared to previous SOTA results.
Connecting Weighted Automata and Recurrent Neural Networks through Spectral Learning
In this paper, we unravel a fundamental connection between weighted finite automata~(WFAs) and second-order recurrent neural networks~(2-RNN… (see more)s): in the case of sequences of discrete symbols, WFAs and 2-RNNs with linear activation functions are expressively equivalent. Motivated by this result, we build upon a recent extension of the spectral learning algorithm to vector-valued WFAs and propose the first provable learning algorithm for linear 2-RNNs defined over sequences of continuous input vectors. This algorithm relies on estimating low rank sub-blocks of the so-called Hankel tensor, from which the parameters of a linear 2-RNN can be provably recovered. The performances of the proposed method are assessed in a simulation study.
Information Fusion in Deep Convolutional Neural Networks for Biomedical Image Segmentation 1
Mohammad Havaei
Nicolas Guizard
Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data
Amjad Almahairi
Sai Rajeswar
Philip Bachman
Learning inter-domain mappings from unpaired data can improve performance in structured prediction tasks, such as image segmentation, by red… (see more)ucing the need for paired data. CycleGAN was recently proposed for this problem, but critically assumes the underlying inter-domain mapping is approximately deterministic and one-to-one. This assumption renders the model ineffective for tasks requiring flexible, many-to-many mappings. We propose a new model, called Augmented CycleGAN, which learns many-to-many mappings between domains. We examine Augmented CycleGAN qualitatively and quantitatively on several image datasets.
Focused Hierarchical RNNs for Conditional Sequence Processing
Nan Rosemary Ke
Konrad Żołna
Zhouhan Lin
Adam Trischler
Recurrent Neural Networks (RNNs) with attention mechanisms have obtained state-of-the-art results for many sequence processing tasks. Most o… (see more)f these models use a simple form of encoder with attention that looks over the entire sequence and assigns a weight to each token independently. We present a mechanism for focusing RNN encoders for sequence modelling tasks which allows them to attend to key parts of the input as needed. We formulate this using a multi-layer conditional sequence encoder that reads in one token at a time and makes a discrete decision on whether the token is relevant to the context or question being asked. The discrete gating mechanism takes in the context embedding and the current hidden state as inputs and controls information flow into the layer above. We train it using policy gradient methods. We evaluate this method on several types of tasks with different attributes. First, we evaluate the method on synthetic tasks which allow us to evaluate the model for its generalization ability and probe the behavior of the gates in more controlled settings. We then evaluate this approach on large scale Question Answering tasks including the challenging MS MARCO and SearchQA tasks. Our models shows consistent improvements for both tasks over prior work and our baselines. It has also shown to generalize significantly better on synthetic tasks as compared to the baselines.
Mutual Information Neural Estimation
Ishmael Belghazi
Aristide Baratin
Sai Rajeswar
Sherjil Ozair
We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent … (see more)over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.
Neural Autoregressive Flows
Chin-Wei Huang
Alexandre Lacoste
Normalizing flows and autoregressive models have been successfully combined to produce state-of-the-art results in density estimation, via M… (see more)asked Autoregressive Flows (MAF), and to accelerate state-of-the-art WaveNet-based speech synthesis to 20x faster than real-time, via Inverse Autoregressive Flows (IAF). We unify and generalize these approaches, replacing the (conditionally) affine univariate transformations of MAF/IAF with a more general class of invertible univariate transformations expressed as monotonic neural networks. We demonstrate that the proposed neural autoregressive flows (NAF) are universal approximators for continuous probability distributions, and their greater expressivity allows them to better capture multimodal target distributions. Experimentally, NAF yields state-of-the-art performance on a suite of density estimation tasks and outperforms IAF in variational autoencoders trained on binarized MNIST.
Learning Hierarchical Structures On-The-Fly with a Recurrent-Recursive Model for Sequences
Athul Jacob
Zhouhan Lin
We propose a hierarchical model for sequential data that learns a tree on-the-fly, i.e. while reading the sequence. In the model, a recurren… (see more)t network adapts its structure and reuses recurrent weights in a recursive manner. This creates adaptive skip-connections that ease the learning of long-term dependencies. The tree structure can either be inferred without supervision through reinforcement learning, or learned in a supervised manner. We provide preliminary experiments in a novel Math Expression Evaluation (MEE) task, which is created to have a hierarchical tree structure that can be used to study the effectiveness of our model. Additionally, we test our model in a well-known propositional logic and language modelling tasks. Experimental results have shown the potential of our approach.
Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition Triggers
Andre Cianflone
Yulan Feng
Jad Kabbara
We introduce the novel task of predicting adverbial presupposition triggers, which is useful for natural language generation tasks such as s… (see more)ummarization and dialogue systems. We introduce two new corpora, derived from the Penn Treebank and the Annotated English Gigaword dataset and investigate the use of a novel attention mechanism tailored to this task. Our attention mechanism augments a baseline recurrent neural network without the need for additional trainable parameters, minimizing the added computational cost of our mechanism. We demonstrate that this model statistically outperforms our baselines.
Neural Models for Key Phrase Extraction and Question Generation
Sandeep Subramanian
Tong Wang
Xingdi Yuan
Saizheng Zhang
Adam Trischler
We propose a two-stage neural model to tackle question generation from documents. First, our model estimates the probability that word seque… (see more)nces in a document are ones that a human would pick when selecting candidate answers by training a neural key-phrase extractor on the answers in a question-answering corpus. Predicted key phrases then act as target answers and condition a sequence-to-sequence question-generation model with a copy mechanism. Empirically, our key-phrase extraction model significantly outperforms an entity-tagging baseline and existing rule-based approaches. We further demonstrate that our question generation system formulates fluent, answerable questions from key phrases. This two-stage system could be used to augment or generate reading comprehension datasets, which may be leveraged to improve machine reading systems or in educational settings.
Straight to the Tree: Constituency Parsing with Neural Syntactic Distance
Yikang Shen
Zhouhan Lin
Athul Jacob
In this work, we propose a novel constituency parsing scheme. The model first predicts a real-valued scalar, named syntactic distance, for e… (see more)ach split position in the sentence. The topology of grammar tree is then determined by the values of syntactic distances. Compared to traditional shift-reduce parsing schemes, our approach is free from the potentially disastrous compounding error. It is also easier to parallelize and much faster. Our model achieves the state-of-the-art single model F1 score of 92.1 on PTB and 86.4 on CTB dataset, which surpasses the previous single model results by a large margin.