Patterns of autism symptoms: hidden structure in the ADOS and ADI-R instruments
Jeremy Lefort-Besnard
Kai Vogeley
Leonhard Schilbach
Gael Varoquaux
Bertrand Thirion
Avoidance Learning Using Observational Reinforcement Learning
David Venuto
Léonard Boussioux
Junhao Wang
Rola Dali
Jhelum Chakravorty
Imitation learning seeks to learn an expert policy from sampled demonstrations. However, in the real world, it is often difficult to find a … (see more)perfect expert and avoiding dangerous behaviors becomes relevant for safety reasons. We present the idea of \textit{learning to avoid}, an objective opposite to imitation learning in some sense, where an agent learns to avoid a demonstrator policy given an environment. We define avoidance learning as the process of optimizing the agent's reward while avoiding dangerous behaviors given by a demonstrator. In this work we develop a framework of avoidance learning by defining a suitable objective function for these problems which involves the \emph{distance} of state occupancy distributions of the expert and demonstrator policies. We use density estimates for state occupancy measures and use the aforementioned distance as the reward bonus for avoiding the demonstrator. We validate our theory with experiments using a wide range of partially observable environments. Experimental results show that we are able to improve sample efficiency during training compared to state of the art policy optimization and safety methods.
Attraction-Repulsion Actor-Critic for Continuous Control Reinforcement Learning
Continuous control tasks in reinforcement learning are important because they provide an important framework for learning in high-dimensiona… (see more)l state spaces with deceptive rewards, where the agent can easily become trapped into suboptimal solutions. One way to avoid local optima is to use a population of agents to ensure coverage of the policy space, yet learning a population with the "best" coverage is still an open problem. In this work, we present a novel approach to population-based RL in continuous control that leverages properties of normalizing flows to perform attractive and repulsive operations between current members of the population and previously observed policies. Empirical results on the MuJoCo suite demonstrate a high performance gain for our algorithm compared to prior work, including Soft-Actor Critic (SAC).
Learning Problem-agnostic Speech Representations from Multiple Self-supervised Tasks
Santiago Pascual
Joan Parets I Serra
Antonio Bonafonte
Learning good representations without supervision is still an open issue in machine learning, and is particularly challenging for speech sig… (see more)nals, which are often characterized by long sequences with a complex hierarchical structure. Some recent works, however, have shown that it is possible to derive useful speech representations by employing a self-supervised encoder-discriminator approach. This paper proposes an improved self-supervised method, where a single neural encoder is followed by multiple workers that jointly solve different self-supervised tasks. The needed consensus across different tasks naturally imposes meaningful constraints to the encoder, contributing to discover general representations and to minimize the risk of learning superficial ones. Experiments show that the proposed approach can learn transferable, robust, and problem-agnostic features that carry on relevant information from the speech signal, such as speaker identity, phonemes, and even higher-level features such as emotional cues. In addition, a number of design choices make the encoder easily exportable, facilitating its direct usage or adaptation to different problems.
Learning Speaker Representations with Mutual Information
Learning good representations is of crucial importance in deep learning. Mutual Information (MI) or similar measures of statistical dependen… (see more)ce are promising tools for learning these representations in an unsupervised way. Even though the mutual information between two random variables is hard to measure directly in high dimensional spaces, some recent studies have shown that an implicit optimization of MI can be achieved with an encoder-discriminator architecture similar to that of Generative Adversarial Networks (GANs). In this work, we learn representations that capture speaker identities by maximizing the mutual information between the encoded representations of chunks of speech randomly sampled from the same sentence. The proposed encoder relies on the SincNet architecture and transforms raw speech waveform into a compact feature vector. The discriminator is fed by either positive samples (of the joint distribution of encoded chunks) or negative samples (from the product of the marginals) and is trained to separate them. We report experiments showing that this approach effectively learns useful speaker representations, leading to promising results on speaker identification and verification tasks. Our experiments consider both unsupervised and semi-supervised settings and compare the performance achieved with different objective functions.
Speech Model Pre-training for End-to-End Spoken Language Understanding
Loren Lugosch
Patrick Ignoto
Vikrant Singh Tomar
Whereas conventional spoken language understanding (SLU) systems map speech to text, and then text to intent, end-to-end SLU systems map spe… (see more)ech directly to intent through a single trainable model. Achieving high accuracy with these end-to-end models without a large amount of training data is difficult. We propose a method to reduce the data requirements of end-to-end SLU in which the model is first pre-trained to predict words and phonemes, thus learning good features for SLU. We introduce a new SLU dataset, Fluent Speech Commands, and show that our method improves performance both when the full dataset is used for training and when only a small subset is used. We also describe preliminary experiments to gauge the model's ability to generalize to new phrases not heard during training.
Neural Architecture Search for Class-incremental Learning
Shenyang Huang
Vincent Francois-Lavet
In class-incremental learning, a model learns continuously from a sequential data stream in which new classes occur. Existing methods often … (see more)rely on static architectures that are manually crafted. These methods can be prone to capacity saturation because a neural network's ability to generalize to new concepts is limited by its fixed capacity. To understand how to expand a continual learner, we focus on the neural architecture design problem in the context of class-incremental learning: at each time step, the learner must optimize its performance on all classes observed so far by selecting the most competitive neural architecture. To tackle this problem, we propose Continual Neural Architecture Search (CNAS): an autoML approach that takes advantage of the sequential nature of class-incremental learning to efficiently and adaptively identify strong architectures in a continual learning setting. We employ a task network to perform the classification task and a reinforcement learning agent as the meta-controller for architecture search. In addition, we apply network transformations to transfer weights from previous learning step and to reduce the size of the architecture search space, thus saving a large amount of computational resources. We evaluate CNAS on the CIFAR-100 dataset under varied incremental learning scenarios with limited computational power (1 GPU). Experimental results demonstrate that CNAS outperforms architectures that are optimized for the entire dataset. In addition, CNAS is at least an order of magnitude more efficient than naively using existing autoML methods.
Torchmeta: A Meta-Learning library for PyTorch
Tristan Deleu
Tobias Würfl
Mandana Samiei
Joseph Paul Cohen
The constant introduction of standardized benchmarks in the literature has helped accelerating the recent advances in meta-learning research… (see more). They offer a way to get a fair comparison between different algorithms, and the wide range of datasets available allows full control over the complexity of this evaluation. However, for a large majority of code available online, the data pipeline is often specific to one dataset, and testing on another dataset requires significant rework. We introduce Torchmeta, a library built on top of PyTorch that enables seamless and consistent evaluation of meta-learning algorithms on multiple datasets, by providing data-loaders for most of the standard benchmarks in few-shot classification and regression, with a new meta-dataset abstraction. It also features some extensions for PyTorch to simplify the development of models compatible with meta-learning algorithms. The code is available here: this https URL
The effect of task and training on intermediate representations in convolutional neural networks revealed with modified RV similarity analysis
Jessica A.F. Thompson
Marc Schoenwiesner
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures
Jordan Hoffmann
Louis Maestrati
Yoshihide Sawada
Jean Michel Sellier
Generative models have achieved impressive results in many domains including image and text generation. In the natural sciences, generative … (see more)models have led to rapid progress in automated drug discovery. Many of the current methods focus on either 1-D or 2-D representations of typically small, drug-like molecules. However, many molecules require 3-D descriptors and exceed the chemical complexity of commonly used dataset. We present a method to encode and decode the position of atoms in 3-D molecules from a dataset of nearly 50,000 stable crystal unit cells that vary from containing 1 to over 100 atoms. We construct a smooth and continuous 3-D density representation of each crystal based on the positions of different atoms. Two different neural networks were trained on a dataset of over 120,000 three-dimensional samples of single and repeating crystal structures, made by rotating the single unit cells. The first, an Encoder-Decoder pair, constructs a compressed latent space representation of each molecule and then decodes this description into an accurate reconstruction of the input. The second network segments the resulting output into atoms and assigns each atom an atomic number. By generating compressed, continuous latent spaces representations of molecules we are able to decode random samples, interpolate between two molecules, and alter known molecules.
Recognizable series on graphs and hypergraphs
Raphaël Bailly
François Denis
Teaching Modelling Literacy: An Artificial Intelligence Approach
Rijul Saini
Gunter Mussbacher
Jörg Kienzle
In Model-Driven Engineering (MDE), models are used to build and analyze complex systems. In the last decades, different modelling formalisms… (see more) have been proposed for supporting software development. However, their adoption and practice strongly rely on mastering essential modelling skills to develop a complete and coherent model-based system. Moreover, it is often difficult for novice modellers to get direct and timely feedback and recommendations on their modelling strategies and decisions, particularly in large classroom settings which hinders their learning. Certainly, there is an opportunity to apply Artificial Intelligence (AI) techniques to an MDE learning environment to empower the provisioning of automated and intelligent modelling advocacy. In this paper, we propose a framework called ModBud (a modelling buddy) to educate novice modellers about the art of abstraction. ModBud uses natural language processing (NLP) and machine learning (ML) to create modelling bots with the aim of improving the modelling skills of novice modellers and assisting other practitioners, too. These bots could be used to support teaching with automatic creation or grading of models and enhance learning beyond the traditional classroom-based MDE education with timely feedback and personalized tutoring. Research challenges for the proposed framework are discussed and a research roadmap is presented.