We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
A Distributional Analysis of Sampling-Based Reinforcement Learning Algorithms
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes. We demonstrate it… (see more)s effectiveness by presenting simple and unified proofs of convergence for a variety of commonly-used methods. We show that value-based methods such as TD(
The goal of the TREC Fair Ranking track was to develop a benchmark for evaluating retrieval systems in terms of fairness to different conten… (see more)t providers in addition to classic notions of relevance. As part of the benchmark, we defined standardized fairness metrics with evaluation protocols and released a dataset for the fair ranking problem. The 2019 task focused on reranking academic paper abstracts given a query. The objective was to fairly represent relevant authors from several groups that were unknown at the system submission time. Thus, the track emphasized the development of systems which have robust performance across a variety of group definitions. Participants were provided with querylog data (queries, documents, and relevance) from Semantic Scholar. This paper presents an overview of the track, including the task definition, descriptions of the data and the annotation process, as well as a comparison of the performance of submitted systems.
Antidepressants increase the risk of falls and fracture in older adults. However, risk estimates vary considerably even in comparable popula… (see more)tions, limiting the usefulness of current evidence for clinical decision making. Our aim was to apply a common protocol to cohorts of older antidepressant users in multiple jurisdictions to estimate fracture risk associated with different antidepressant classes, drugs, doses, and potential treatment indications.
2020-03-17
Journal of the American Geriatrics Society (published)
We introduce a novel random projection technique for efficiently reducing the dimension of very high-dimensional tensors. Building upon clas… (see more)sical results on Gaussian random projections and Johnson-Lindenstrauss transforms~(JLT), we propose two tensorized random projection maps relying on the tensor train~(TT) and CP decomposition format, respectively. The two maps offer very low memory requirements and can be applied efficiently when the inputs are low rank tensors given in the CP or TT format. Our theoretical analysis shows that the dense Gaussian matrix in JLT can be replaced by a low-rank tensor implicitly represented in compressed form with random factors, while still approximately preserving the Euclidean distance of the projected inputs. In addition, our results reveal that the TT format is substantially superior to CP in terms of the size of the random projection needed to achieve the same distortion ratio. Experiments on synthetic data validate our theoretical analysis and demonstrate the superiority of the TT decomposition.
Learning in non-stationary environments is one of the biggest challenges in machine learning. Non-stationarity can be caused by either task … (see more)drift, i.e., the drift in the conditional distribution of labels given the input data, or the domain drift, i.e., the drift in the marginal distribution of the input data. This paper aims to tackle this challenge in the context of continuous domain adaptation, where the model is required to learn new tasks adapted to new domains in a non-stationary environment while maintaining previously learned knowledge. To deal with both drifts, we propose variational domain-agnostic feature replay, an approach that is composed of three components: an inference module that filters the input data into domain-agnostic representations, a generative module that facilitates knowledge transfer, and a solver module that applies the filtered and transferable knowledge to solve the queries. We address the two fundamental scenarios in continuous domain adaptation, demonstrating the effectiveness of our proposed approach for practical usage.
Scaling adaptive traffic signal control involves dealing with combinatorial state and action spaces. Multi-agent reinforcement learning atte… (see more)mpts to address this challenge by distributing control to specialized agents. However, specialization hinders generalization and transferability, and the computational graphs underlying neural-network architectures—dominating in the multi-agent setting—do not offer the flexibility to handle an arbitrary number of entities which changes both between road networks, and over time as vehicles traverse the network. We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks which adapts to the structure of any road network, to learn detailed representations of traffic signal controllers and their surroundings. Our decentralized approach enables learning of a transferable-adaptive-traffic-signal-control policy. After being trained on an arbitrary set of road networks, our model can generalize to new road networks and traffic distributions, with no additional training and a constant number of parameters, enabling greater scalability compared to prior methods. Furthermore, our approach can exploit the granularity of available data by capturing the (dynamic) demand at both the lane level and the vehicle level. The proposed method is tested on both road networks and traffic settings never experienced during training. We compare IG-RL to multi-agent reinforcement learning and domain-specific baselines. In both synthetic road networks and in a larger experiment involving the control of the 3,971 traffic signals of Manhattan, we show that different instantiations of IG-RL outperform baselines.