GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
Generative Flow Networks (GFlowNets) have been introduced as a method to sample a diverse set of candidates in an active learning context, w… (see more)ith a training objective that makes them approximately sample in proportion to a given reward function. In this paper, we show a number of additional theoretical properties of GFlowNets. They can be used to estimate joint probability distributions and the corresponding marginal distributions where some variables are unspecified and, of particular interest, can represent distributions over composite objects like sets and graphs. GFlowNets amortize the work typically done by computationally expensive MCMC methods in a single but trained generative pass. They could also be used to estimate partition functions and free energies, conditional probabilities of supersets (supergraphs) given a subset (subgraph), as well as marginal distributions over all supersets (supergraphs) of a given set (graph). We introduce variations enabling the estimation of entropy and mutual information, sampling from a Pareto frontier, connections to reward-maximizing policies, and extensions to stochastic environments, continuous actions and modular energy functions.
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
Generative Flow Networks (GFlowNets) have been introduced as a method to sample a diverse set of candidates in an active learning context, w… (see more)ith a training objective that makes them approximately sample in proportion to a given reward function. In this paper, we show a number of additional theoretical properties of GFlowNets. They can be used to estimate joint probability distributions and the corresponding marginal distributions where some variables are unspecified and, of particular interest, can represent distributions over composite objects like sets and graphs. GFlowNets amortize the work typically done by computationally expensive MCMC methods in a single but trained generative pass. They could also be used to estimate partition functions and free energies, conditional probabilities of supersets (supergraphs) given a subset (subgraph), as well as marginal distributions over all supersets (supergraphs) of a given set (graph). We introduce variations enabling the estimation of entropy and mutual information, sampling from a Pareto frontier, connections to reward-maximizing policies, and extensions to stochastic environments, continuous actions and modular energy functions.
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
Generative Flow Networks (GFlowNets) have been introduced as a method to sample a diverse set of candidates in an active learning context, w… (see more)ith a training objective that makes them approximately sample in proportion to a given reward function. In this paper, we show a number of additional theoretical properties of GFlowNets. They can be used to estimate joint probability distributions and the corresponding marginal distributions where some variables are unspecified and, of particular interest, can represent distributions over composite objects like sets and graphs. GFlowNets amortize the work typically done by computationally expensive MCMC methods in a single but trained generative pass. They could also be used to estimate partition functions and free energies, conditional probabilities of supersets (supergraphs) given a subset (subgraph), as well as marginal distributions over all supersets (supergraphs) of a given set (graph). We introduce variations enabling the estimation of entropy and mutual information, sampling from a Pareto frontier, connections to reward-maximizing policies, and extensions to stochastic environments, continuous actions and modular energy functions.
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
Generative Flow Networks (GFlowNets) have been introduced as a method to sample a diverse set of candidates in an active learning context, w… (see more)ith a training objective that makes them approximately sample in proportion to a given reward function. In this paper, we show a number of additional theoretical properties of GFlowNets. They can be used to estimate joint probability distributions and the corresponding marginal distributions where some variables are unspecified and, of particular interest, can represent distributions over composite objects like sets and graphs. GFlowNets amortize the work typically done by computationally expensive MCMC methods in a single but trained generative pass. They could also be used to estimate partition functions and free energies, conditional probabilities of supersets (supergraphs) given a subset (subgraph), as well as marginal distributions over all supersets (supergraphs) of a given set (graph). We introduce variations enabling the estimation of entropy and mutual information, sampling from a Pareto frontier, connections to reward-maximizing policies, and extensions to stochastic environments, continuous actions and modular energy functions.
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
Generative Flow Networks (GFlowNets) have been introduced as a method to sample a diverse set of candidates in an active learning context, w… (see more)ith a training objective that makes them approximately sample in proportion to a given reward function. In this paper, we show a number of additional theoretical properties of GFlowNets. They can be used to estimate joint probability distributions and the corresponding marginal distributions where some variables are unspecified and, of particular interest, can represent distributions over composite objects like sets and graphs. GFlowNets amortize the work typically done by computationally expensive MCMC methods in a single but trained generative pass. They could also be used to estimate partition functions and free energies, conditional probabilities of supersets (supergraphs) given a subset (subgraph), as well as marginal distributions over all supersets (supergraphs) of a given set (graph). We introduce variations enabling the estimation of entropy and mutual information, sampling from a Pareto frontier, connections to reward-maximizing policies, and extensions to stochastic environments, continuous actions and modular energy functions.
Splitting, Renaming, Removing: A Study of Common Cleaning Activities in Jupyter Notebooks
Helen Dong
Shurui Zhou
Christian Kästner
Data scientists commonly use computational notebooks because they provide a good environment for testing multiple models. However, once the … (see more)scientist completes the code and finds the ideal model, he or she will have to dedicate time to clean up the code in order for others to easily understand it. In this paper, we perform a qualitative study on how scientists clean their code in hopes of being able to suggest a tool to automate this process. Our end goal is for tool builders to address possible gaps and provide additional aid to data scientists, who then can focus more on their actual work rather than the routine and tedious cleaning work. By sampling notebooks from GitHub and analyzing changes between subsequent commits, we identified common cleaning activities, such as changes to markdown (e.g., adding headers sections or descriptions) or comments (both deleting dead code and adding descriptions) as well as reordering cells. We also find that common cleaning activities differ depending on the intended purpose of the notebook. Our results provide a valuable foundation for tool builders and notebook users, as many identified cleaning activities could benefit from codification of best practices and dedicated tool support, possibly tailored depending on intended use.