Generating community measures of food purchasing activities using store-level electronic grocery transaction records: an ecological study in Montreal, Canada
Hiroshi Mamiya
Alexandra M. Schmidt
Erica E.M. Moodie
Yu Ma
Deep Learning for Detecting Extreme Weather Patterns
Mayur Mudigonda
Mayur Mudigonda, Prabhat Ram
Prabhat Ram
Karthik Kashinath
Evan Racah
Ankur Mahesh
Yunjie Liu
Christopher Beckham
Jim Biard
Thorsten Kurth
Sookyung Kim
Burlen Loring
Travis O'Brien
K. Kunkel
Kenneth E. Kunkel
M. Wehner
Michael F. Wehner … (see 2 more)
W. Collins
William D. Collins
Magnetoencephalography resting-state correlates of executive and language components of verbal fluency
Victor Oswald
Younes Zerouali
Aubrée Boulet-Craig
M. Krajinovic
Caroline Laverdière
D. Sinnett
Pierre W. Jolicoeur
Sarah Lippé
Philippe Robaey
Lacking social support is associated with structural divergences in hippocampus–default network co-variation patterns
Chris Zajner
Nathan Spreng
Elaborate social interaction is a pivotal asset of the human species. The complexity of people’s social lives may constitute the dominatin… (see more)g factor in the vibrancy of many individuals’ environment. The neural substrates linked to social cognition thus appear especially susceptible when people endure periods of social isolation: here, we zoom in on the systematic inter-relationships between two such neural substrates, the allocortical hippocampus (HC) and the neocortical default network (DN). Previous human social neuroscience studies have focused on the DN, while HC subfields have been studied in most detail in rodents and monkeys. To bring into contact these two separate research streams, we directly quantified how DN subregions are coherently co-expressed with specific HC subfields in the context of social isolation. A two-pronged decomposition of structural brain scans from ∼40,000 UK Biobank participants linked lack of social support to mostly lateral subregions in the DN patterns. This lateral DN association co-occurred with HC patterns that implicated especially subiculum, presubiculum, CA2, CA3, and dentate gyrus. Overall, the subregion divergences within spatially overlapping signatures of HC-DN co-variation followed a clear segregation divide into the left and right brain hemispheres. Separable regimes of structural HC-DN co-variation also showed distinct associations with the genetic predisposition for lacking social support at the population level.
Loneliness is linked to specific subregional alterations in hippocampus-default network covariation
Chris Zajner
Nathan Spreng
A modified Thompson sampling-based learning algorithm for unknown linear systems
Yi. Ouyang
Mukul Gagrani
Rahul Jain
We revisit the Thompson sampling-based learning algorithm for controlling an unknown linear system with quadratic cost proposed in [1]. This… (see more) algorithm operates in episodes of dynamic length and it is shown to have a regret bound of
Toward Optimal Solution for the Context-Attentive Bandit Problem
Djallel Bouneffouf
Raphael Feraud
Sohini Upadhyay
Yasaman Khazaeni
Scalable Regret for Learning to Control Network-Coupled Subsystems With Unknown Dynamics
Sagar Sudhakara
Ashutosh Nayyar
Yi. Ouyang
In this article, we consider the problem of controlling an unknown linear quadratic Gaussian (LQG) system consisting of multiple subsystems … (see more)connected over a network. Our goal is to minimize and quantify the regret (i.e., loss in performance) of our learning and control strategy with respect to an oracle who knows the system model. Upfront viewing the interconnected subsystems globally and directly using existing LQG learning algorithms for the global system results in a regret that increases super-linearly with the number of subsystems. Instead, we propose a new Thompson sampling-based learning algorithm which exploits the structure of the underlying network. We show that the expected regret of the proposed algorithm is bounded by
Generic acquisition protocol for quantitative MRI of the spinal cord
Eva Alonso‐Ortiz
Mihael Abramovic
Carina Arneitz
Nicole Atcheson
Laura Barlow
Robert L. Barry
Markus Barth
Marco Battiston
Christian Büchel
Matthew D. Budde
Virginie Callot
Anna J. E. Combes
Benjamin De Leener
Maxime Descoteaux
Paulo Loureiro de Sousa
Marek Dostál
Julien Doyon
Adam Dvorak
Falk Eippert … (see 71 more)
Karla R. Epperson
Kevin S. Epperson
Patrick Freund
Jürgen Finsterbusch
Alexandru Foias
Michela Fratini
Issei Fukunaga
Claudia A. M. Gandini Wheeler-Kingshott
Giancarlo Germani
Guillaume Gilbert
Federico Giove
Charley Gros
Francesco Grussu
Akifumi Hagiwara
Pierre-Gilles Henry
Tomáš Horák
Masaaki Hori
James Joers
Kouhei Kamiya
Haleh Karbasforoushan
Miloš Keřkovský
Ali Khatibi
Joo‐Won Kim
Nawal Kinany
Hagen H. Kitzler
Shannon Kolind
Yazhuo Kong
Petr Kudlička
Paul Kuntke
Nyoman D. Kurniawan
Slawomir Kusmia
René Labounek
Maria Marcella Lagana
Cornelia Laule
Christine S. Law
Christophe Lenglet
Tobias Leutritz
Yaou Liu
Sara Llufriu
Sean Mackey
Eloy Martinez-Heras
Loan Mattera
Igor Nestrašil
Kristin P. O’Grady
Nico Papinutto
Daniel Papp
Deborah Pareto
Todd B. Parrish
Anna Pichiecchio
Ferran Prados
Àlex Rovira
Marc J. Ruitenberg
Rebecca S. Samson
Giovanni Savini
Maryam Seif
Alan C. Seifert
Alex K. Smith
Seth A. Smith
Zachary A. Smith
Elisabeth Solana
Yuichi Suzuki
George Tackley
Alexandra Tinnermann
Jan Valošek
Dimitri Van De Ville
Marios C. Yiannakas
K. Weber
Nikolaus Weiskopf
Richard G. Wise
Patrik O. Wyss
Junqian Xu
Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers
Eva Alonso‐Ortiz
Mihael Abramovic
Carina Arneitz
Nicole Atcheson
Laura Barlow
Robert L. Barry
Markus Barth
Marco Battiston
Christian Büchel
Matthew D. Budde
Virginie Callot
Anna J. E. Combes
Benjamin De Leener
Maxime Descoteaux
Paulo Loureiro de Sousa
Marek Dostál
Julien Doyon
Adam Dvorak
Falk Eippert … (see 71 more)
Karla R. Epperson
Kevin S. Epperson
Patrick Freund
Jürgen Finsterbusch
Alexandru Foias
Michela Fratini
Issei Fukunaga
Claudia A. M. Gandini Wheeler-Kingshott
Giancarlo Germani
Guillaume Gilbert
Federico Giove
Charley Gros
Francesco Grussu
Akifumi Hagiwara
Pierre-Gilles Henry
Tomáš Horák
Masaaki Hori
James Joers
Kouhei Kamiya
Haleh Karbasforoushan
Miloš Keřkovský
Ali Khatibi
Joo‐Won Kim
Nawal Kinany
Hagen H. Kitzler
Shannon Kolind
Yazhuo Kong
Petr Kudlička
Paul Kuntke
Nyoman D. Kurniawan
Slawomir Kusmia
René Labounek
Maria Marcella Lagana
Cornelia Laule
Christine S. Law
Christophe Lenglet
Tobias Leutritz
Yaou Liu
Sara Llufriu
Sean Mackey
Eloy Martinez-Heras
Loan Mattera
Igor Nestrašil
Kristin P. O’Grady
Nico Papinutto
Daniel Papp
Deborah Pareto
Todd B. Parrish
Anna Pichiecchio
Ferran Prados
Àlex Rovira
Marc J. Ruitenberg
Rebecca S. Samson
Giovanni Savini
Maryam Seif
Alan C. Seifert
Alex K. Smith
Seth A. Smith
Zachary A. Smith
Elisabeth Solana
Y. Suzuki
George Tackley
Alexandra Tinnermann
Jan Valošek
Dimitri Van De Ville
Marios C. Yiannakas
Kenneth A. Weber
Nikolaus Weiskopf
Richard G. Wise
Patrik O. Wyss
Junqian Xu
Forgetting Enhances Episodic Control With Structured Memories
Annik Yalnizyan-Carson
Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain forgets more than is required based on limi… (see more)tations of mnemonic capacity. Episodic memories, in particular, are liable to be forgotten over time. Researchers have hypothesized that it may be beneficial for decision making to forget episodic memories over time. Reinforcement learning offers a normative framework in which to test such hypotheses. Here, we show that a reinforcement learning agent that uses an episodic memory cache to find rewards in maze environments can forget a large percentage of older memories without any performance impairments, if they utilize mnemonic representations that contain structural information about space. Moreover, we show that some forgetting can actually provide a benefit in performance compared to agents with unbounded memories. Our analyses of the agents show that forgetting reduces the influence of outdated information and states which are not frequently visited on the policies produced by the episodic control system. These results support the hypothesis that some degree of forgetting can be beneficial for decision making, which can help to explain why the brain forgets more than is required by capacity limitations.
Hybrid Harmony: A Multi-Person Neurofeedback Application for Interpersonal Synchrony
Phoebe Chen
Sophie Hendrikse
Kaia Sargent
Michele Romani
Matthias Oostrik
Tom F. Wilderjans
Sander Koole
David Medine
Suzanne Dikker
Recent years have seen a dramatic increase in studies measuring brain activity, physiological responses, and/or movement data from multiple … (see more)individuals during social interaction. For example, so-called “hyperscanning” research has demonstrated that brain activity may become synchronized across people as a function of a range of factors. Such findings not only underscore the potential of hyperscanning techniques to capture meaningful aspects of naturalistic interactions, but also raise the possibility that hyperscanning can be leveraged as a tool to help improve such naturalistic interactions. Building on our previous work showing that exposing dyads to real-time inter-brain synchrony neurofeedback may help boost their interpersonal connectedness, we describe the biofeedback application Hybrid Harmony, a Brain-Computer Interface (BCI) that supports the simultaneous recording of multiple neurophysiological datastreams and the real-time visualization and sonification of inter-subject synchrony. We report results from 236 dyads experiencing synchrony neurofeedback during naturalistic face-to-face interactions, and show that pairs' social closeness and affective personality traits can be reliably captured with the inter-brain synchrony neurofeedback protocol, which incorporates several different online inter-subject connectivity analyses that can be applied interchangeably. Hybrid Harmony can be used by researchers who wish to study the effects of synchrony biofeedback, and by biofeedback artists and serious game developers who wish to incorporate multiplayer situations into their practice.