Existing eHealth Solutions for Older Adults Living With Neurocognitive Disorders (Mild and Major) or Dementia and Their Informal Caregivers: Protocol for an Environmental Scan
Ambily Jose
Maxime Sasseville
Samantha Dequanter
Ellen Gorus
Anik Giguère
Anne Bourbonnais
Ronald Buyl
Marie-Pierre Gagnon
Background Dementia is one of the main public health priorities for current and future societies worldwide. Over the past years, eHealth sol… (see more)utions have added numerous promising solutions to enhance the health and wellness of people living with dementia-related cognitive problems and their primary caregivers. Previous studies have shown that an environmental scan identifies the knowledge-to-action gap meaningfully. This paper presents the protocol of an environmental scan to monitor the currently available eHealth solutions targeting dementia and other neurocognitive disorders against selected attributes. Objective This study aims to identify the characteristics of currently available eHealth solutions recommended for older adults with cognitive problems and their informal caregivers. To inform the recommendations regarding eHealth solutions for these people, it is important to obtain a comprehensive view of currently available technologies and document their outcomes and conditions of success. Methods We will perform an environmental scan of available eHealth solutions for older adults with cognitive impairment or dementia and their informal caregivers. Potential solutions will be initially identified from a previous systematic review. We will also conduct targeted searches for gray literature on Google and specialized websites covering the regions of Canada and Europe. Technological tools will be scanned based on a preformatted extraction grid. The relevance and efficiency based on the selected attributes will be assessed. Results We will prioritize relevant solutions based on the needs and preferences identified from a qualitative study among older adults with cognitive impairment or dementia and their informal caregivers. Conclusions This environmental scan will identify eHealth solutions that are currently available and scientifically appraised for older adults with cognitive impairment or dementia and their informal caregivers. This knowledge will inform the development of a decision support tool to assist older adults and their informal caregivers in their search for adequate eHealth solutions according to their needs and preferences based on trustable information. International Registered Report Identifier (IRRID) DERR1-10.2196/41015
Spectral Regularization: an Inductive Bias for Sequence Modeling
Kaiwen Hou
Hou Rabusseau
Adult neurogenesis acts as a neural regularizer
Lina M. Tran
Adam Santoro
Lulu Liu
Sheena A. Josselyn
Paul W. Frankland
Automatic measure and normalization of spinal cord cross-sectional area using the pontomedullary junction
Sandrine Bédard
A General-Purpose Neural Architecture for Geospatial Systems
Nasim Rahaman
Martin Weiss
Frederik Träuble
Francesco Locatello
Alexandre Lacoste
Li Erran Li
Bernhard Schölkopf
Consistent Training via Energy-Based GFlowNets for Modeling Discrete Joint Distributions
Chanakya Ajit Ekbote
Moksh J. Jain
Payel Das
Generative Flow Networks (GFlowNets) have demonstrated significant performance improvements for generating diverse discrete objects …
Discrete Factorial Representations as an Abstraction for Goal Conditioned Reinforcement Learning
Riashat Islam
Hongyu Zang
Anirudh Goyal
Alex Lamb
Kenji Kawaguchi
Xin Li
Romain Laroche
Remi Tachet des Combes
Global SARS-CoV-2 seroprevalence from January 2020 to April 2022: A systematic review and meta-analysis of standardized population-based studies
Isabel Bergeri
Mairead Whelan
Harriet Ware
Lorenzo Subissi
Anthony Nardone
Hannah C. Lewis
Zihan Li
Xiaomeng Ma
Marta Valenciano
Brianna Cheng
Lubna Al Ariqi
Arash Rashidian
Joseph Okeibunor
Tasnim Azim
Pushpa Wijesinghe
Linh-Vi Le
Aisling Vaughan
Richard Pebody
Andrea Vicari
Tingting Yan … (see 9 more)
Mercedes Yanes-Lane
Christian Cao
David A. Clifton
Matthew P. Cheng
Jesse Papenburg
Niklas Bobrovitz
Rahul K. Arora
Maria D Van Kerkhove
Successive-Cancellation Decoding of Reed-Muller Codes With Fast Hadamard Transform
Nghia Doan
Seyyed Ali Hashemi
A novel permuted fast successive-cancellation list decoding algorithm with fast Hadamard transform (FHT-FSCL) is presented. The proposed dec… (see more)oder initializes
Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love Constraints
Jose Gallego-Posada
Juan Ramirez
Akram Erraqabi
The performance of trained neural networks is robust to harsh levels of pruning. Coupled with the ever-growing size of deep learning models,… (see more) this observation has motivated extensive research on learning sparse models. In this work, we focus on the task of controlling the level of sparsity when performing sparse learning. Existing methods based on sparsity-inducing penalties involve expensive trial-and-error tuning of the penalty factor, thus lacking direct control of the resulting model sparsity. In response, we adopt a constrained formulation: using the gate mechanism proposed by Louizos et al. (2018), we formulate a constrained optimization problem where sparsification is guided by the training objective and the desired sparsity target in an end-to-end fashion. Experiments on CIFAR-{10, 100}, TinyImageNet, and ImageNet using WideResNet and ResNet{18, 50} models validate the effectiveness of our proposal and demonstrate that we can reliably achieve pre-determined sparsity targets without compromising on predictive performance.
MAgNet: Mesh Agnostic Neural PDE Solver
Oussama Boussif
Dan Assouline
The computational complexity of classical numerical methods for solving Partial Differential Equations (PDE) scales significantly as the res… (see more)olution increases. As an important example, climate predictions require fine spatio-temporal resolutions to resolve all turbulent scales in the fluid simulations. This makes the task of accurately resolving these scales computationally out of reach even with modern supercomputers. As a result, current numerical modelers solve PDEs on grids that are too coarse (3km to 200km on each side), which hinders the accuracy and usefulness of the predictions. In this paper, we leverage the recent advances in Implicit Neural Representations (INR) to design a novel architecture that predicts the spatially continuous solution of a PDE given a spatial position query. By augmenting coordinate-based architectures with Graph Neural Networks (GNN), we enable zero-shot generalization to new non-uniform meshes and long-term predictions up to 250 frames ahead that are physically consistent. Our Mesh Agnostic Neural PDE Solver (MAgNet) is able to make accurate predictions across a variety of PDE simulation datasets and compares favorably with existing baselines. Moreover, MAgNet generalizes well to different meshes and resolutions up to four times those trained on.
Rethinking Generalization: The Impact of Annotation Style on Medical Image Segmentation
Brennan Nichyporuk
Jillian L. Cardinell
Justin Szeto
Raghav Mehta
Jean-Pierre R. Falet
Douglas Arnold
Sotirios A. Tsaftaris
Generalization is an important attribute of machine learning models, particularly for those that are to be deployed in a medical context, wh… (see more)ere unreliable predictions can have real world consequences. While the failure of models to generalize across datasets is typically attributed to a mismatch in the data distributions, performance gaps are often a consequence of biases in the "ground-truth" label annotations. This is particularly important in the context of medical image segmentation of pathological structures (e.g. lesions), where the annotation process is much more subjective, and affected by a number underlying factors, including the annotation protocol, rater education/experience, and clinical aims, among others. In this paper, we show that modeling annotation biases, rather than ignoring them, poses a promising way of accounting for differences in annotation style across datasets. To this end, we propose a generalized conditioning framework to (1) learn and account for different annotation styles across multiple datasets using a single model, (2) identify similar annotation styles across different datasets in order to permit their effective aggregation, and (3) fine-tune a fully trained model to a new annotation style with just a few samples. Next, we present an image-conditioning approach to model annotation styles that correlate with specific image features, potentially enabling detection biases to be more easily identified.