Augmenting Transit Network Design Algorithms with Deep Learning
Andrew Holliday
This paper considers the use of deep learning models to enhance optimization algorithms for transit network design. Transit network design i… (see more)s the problem of determining routes for transit vehicles that minimize travel time and operating costs, while achieving full service coverage. State-of-the-art meta-heuristic search algorithms give good results on this problem, but can be very time-consuming. In contrast, neural networks can learn sub-optimal but fast-to-compute heuristics based on large amounts of data. Combining these approaches, we develop a fast graph neural network model for transit planning, and use it to initialize state-of-the-art search algorithms. We show that this combination can improve the results of these algorithms on a variety of metrics by up to 17%, without increasing their run time; or they can match the quality of the original algorithms while reducing the computing time by up to a factor of 50.
Auxiliary Losses for Learning Generalizable Concept-based Models
Ivaxi Sheth
Bayes-MIL: A New Probabilistic Perspective on Attention-based Multiple Instance Learning for Whole Slide Images
Yufei Cui
Ziquan Liu
Xiangyu Liu
Cong Wang
Tei-Wei Kuo
Chun Jason Xue
Antoni Bert Chan
Multiple instance learning (MIL) is a popular weakly-supervised learning model on the whole slide image (WSI) for AI-assisted pathology diag… (see more)nosis. The recent advance in attention-based MIL allows the model to find its region-of-interest (ROI) for interpretation by learning the attention weights for image patches of WSI slides. However, we empirically find that the interpretability of some related methods is either untrustworthy as the principle of MIL is violated or unsatisfactory as the high-attention regions are not consistent with experts’ annotations. In this paper, we propose Bayes-MIL to address the problem from a probabilistic perspective. The induced patch-level uncertainty is proposed as a new measure of MIL interpretability, which outperforms previous methods in matching doctors annotations. We design a slide-dependent patch regularizer (SDPR) for the attention, imposing constraints derived from the MIL assumption, on the attention distribution. SDPR explicitly constrains the model to generate correct attention values. The spatial information is further encoded by an approximate convolutional conditional random field (CRF), for better interpretability. Experimental results show Bayes-MIL outperforms the related methods in patch-level and slide-level metrics and provides much better interpretable ROI on several large-scale WSI datasets.
Bayes-MIL: A New Probabilistic Perspective on Attention-based Multiple Instance Learning for Whole Slide Images
Yufei Cui
Ziquan Liu
Xiangyu Liu
Cong Wang
Tei-Wei Kuo
Chun Jason Xue
Antoni B. Chan
Multiple instance learning (MIL) is a popular weakly-supervised learning model on the whole slide image (WSI) for AI-assisted pathology diag… (see more)nosis. The recent advance in attention-based MIL allows the model to find its region-of-interest (ROI) for interpretation by learning the attention weights for image patches of WSI slides. However, we empirically find that the interpretability of some related methods is either untrustworthy as the principle of MIL is violated or unsatisfactory as the high-attention regions are not consistent with experts’ annotations. In this paper, we propose Bayes-MIL to address the problem from a probabilistic perspective. The induced patch-level uncertainty is proposed as a new measure of MIL interpretability, which outperforms previous methods in matching doctors annotations. We design a slide-dependent patch regularizer (SDPR) for the attention, imposing constraints derived from the MIL assumption, on the attention distribution. SDPR explicitly constrains the model to generate correct attention values. The spatial information is further encoded by an approximate convolutional conditional random field (CRF), for better interpretability. Experimental results show Bayes-MIL outperforms the related methods in patch-level and slide-level metrics and provides much better interpretable ROI on several large-scale WSI datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (see more) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (see more) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Anh Tuan Luu
Xavier Bresson
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (see more) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (see more) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (see more) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (see more) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (see more) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.