Rare CNVs and phenome-wide profiling highlight brain structural divergence and phenotypical convergence
Jakub Kopal
Kuldeep Kumar
Claudia Modenato
Clara A. Moreau
Sandra Martin-Brevet
Martineau Jean-Louis
Charles-Olivier Martin
C.O. Martin
Zohra Saci
Nadine Younis
Petra Tamer
Elise Douard
Anne M. Maillard
Borja Rodriguez-Herreros
Aurélie Pain
Sonia Richetin
Leila Kushan
Ana I. Silva … (see 13 more)
Marianne B.M. van den Bree
David E.J. Linden
M. J. Owen
Jeremy Hall
Sarah Lippé
Bogdan Draganski
Ida E. Sønderby
Ole A. Andreassen
David C. Glahn
Paul M. Thompson
Carrie E. Bearden
Sébastien Jacquemont
Ternary Quantization: A Survey
Danyang Liu
Inference time, model size, and accuracy are critical for deploying deep neural network models. Numerous research efforts have been made to … (see more)compress neural network models with faster inference and higher accuracy. Pruning and quantization are mainstream methods to this end. During model quantization, converting individual float values of layer weights to low-precision ones can substantially reduce the computational overhead and improve the inference speed. Many quantization methods have been studied, for example, vector quantization, low-bit quantization, and binary/ternary quantization. This survey focuses on ternary quantization. We review the evolution of ternary quantization and investigate the relationships among existing ternary quantization methods from the perspective of projection function and optimization methods.
A108 AUTOMATED DETECTION OF ILEOCECAL VALVE, APPENDICEAL ORIFICE, AND POLYP DURING COLONOSCOPY USING A DEEP LEARNING MODEL
Mahsa Taghiakbari
Sina Hamidi Ghalehjegh
E Jehanno
Tess Berthier
Lisa Di Jorio
Alan Barkun
Eric Deslandres
Simon Bouchard
Sacha Sidani
Daniel von Renteln
Assessing the impact of aircraft arrival on ambient ultrafine particle number concentrations in near-airport communities in Boston, Massachusetts.
Chloe S. Chung
K. Lane
Flannery Black-Ingersoll
Claire Schollaert
Sijia Li
Matthew C. Simon
J. Levy
Assessing the Impact of Aircraft Arrival on Ambient Ultrafine Particle Number Concentrations in Near-Airport Communities in Boston, Massachusetts
Chloe S. Chung
Chloe S. Kim
Kevin James Lane
K. Lane
Flannery Black-Ingersoll
Claire Schollaert
Sijia Li
Matthew C. Simon
Jonathan I. Levy
Jerrold H. Levy
A Convex Reformulation and an Outer Approximation for a Large Class of Binary Quadratic Programs
Borzou Rostami
Fausto Errico
Andrea Lodi
Design and Implementation of Smooth Renewable Power in Cloud Data Centers
Xinxin Liu
Yu Hua
Ling Yang
Yuanyuan Sun
The renewable power has been widely used in modern cloud data centers, which also produce large electricity bills and the negative impacts o… (see more)n environments. However, frequent fluctuation and intermittency of renewable power often cause the challenges in terms of the stability of both electricity grid and data centers, as well as decreasing the utilization of renewable power. Existing schemes fail to alleviate the renewable power fluctuation, which is caused by the essential properties of renewable power. In order to address this problem, we propose an efficient and easy-to-use smooth renewable power-aware scheme, called Smoother, which consists of Flexible Smoothing (FS) and Active Delay (AD). First, in order to smooth the fluctuation of renewable power, FS carries out the optimized charge/discharge operation via computing the minimum variance of the renewable power that is supplied to data centers per interval. Second, AD improves the utilization of renewable power via actively adjusting the execution time of deferrable workloads. Extensive experimental results via examining the traces of real-world data centers demonstrate that Smoother significantly reduces the negative impact of renewable power fluctuations on data centers and improves the utilization of renewable power by 250.88 percent on average. We have released the source codes for public use.
Dynamic shimming in the cervical spinal cord for multi-echo gradient-echo imaging at 3 T
Eva Alonso‐Ortiz
Daniel Papp
A. D'Astous
An Extended State Space Model for Aggregation of Large-Scale EVs Considering Fast Charging
Sina Kiani
Keyhan Sheshyekani
This article presents an extended state space model for aggregation of large-scale electric vehicles (EVs) for frequency regulation and peak… (see more) load shaving in power systems. The proposed model systematically deals with the fast charging of EVs as an effective solution for immediate charging requirements. Furthermore, the proposed extended state space model increases the flexibility of the EV aggregator (EVA) by enabling the EVs to participate in ancillary services with both regular and fast charging/discharging rates. This will help the EVA to provide a prompt and efficient response to severe generation-consumption imbalances. A probabilistic control approach is developed which reduces the communication burden of the EVA. Furthermore, the uncertainties related to EV users' behavior are modeled in real-time. The simulations are conducted for a typical power system including a large population of EVs, a conventional generator (CG), and a wind generation system. It is shown that the proposed aggregation model can accurately describe the aggregated behavior of a large population of EVs enabling them to efficiently participate in frequency regulation and peak load shaving services. Finally, the performance of EVA is evaluated for different driving behaviors and state of charge (SOC) levels of the EV population.
Imaging of Neck Nodes in Head and Neck Cancers - a Comprehensive Update.
Kausik Bhattacharya
A. Mahajan
Richa Vaish
Sachin Vasant Rane
Shital Shukla
A. D'cruz
Imaging of Neck Nodes in Head and Neck Cancers – a Comprehensive Update
K. Bhattacharya
A. Mahajan
R. Vaish
S. Rane
S. Shukla
A.K. D'Cruz
Memory-Efficient FPGA Implementation of Stochastic Simulated Annealing
Duckgyu Shin
Naoya Onizawa
Takahiro Hanyu
Simulated annealing (SA) is a well-known algorithm for solving combinatorial optimization problems. However, the computation time of SA incr… (see more)eases rapidly, as the size of the problem grows. Recently, a stochastic simulated annealing (SSA) algorithm that converges faster than conventional SA has been reported. In this paper, we present a hardware-aware SSA (HA-SSA) algorithm for memory-efficient FPGA implementations. HA-SSA can reduce the memory usage of storing intermediate results while maintaining the computing speed of SSA. For evaluation purposes, the proposed algorithm is compared with the conventional SSA and SA approaches on maximum cut combinatorial optimization problems. HA-SSA achieves a convergence speed that is up to 114-times faster than that of the conventional SA algorithm depending on the maximum cut problem selected from the G-set which is a dataset of the maximum cut problems. HA-SSA is implemented on a field-programmable gate array (FPGA) (Xilinx Kintex-7), and it achieves up to 6-times the memory efficiency of conventional SSA while maintaining high solution quality for optimization problems.