Publications

Low-Rank Expert Merging for Multi-Source Domain Adaptation in Person Re-Identification
Taha Mustapha Nehdi
Nairouz Mrabah
Atif Belal
Eric Granger
Adapting person re-identification (reID) models to new target environments remains a challenging problem that is typically addressed using u… (see more)nsupervised domain adaptation (UDA) methods. Recent works show that when labeled data originates from several distinct sources (e.g., datasets and cameras), considering each source separately and applying multi-source domain adaptation (MSDA) typically yields higher accuracy and robustness compared to blending the sources and performing conventional UDA. However, state-of-the-art MSDA methods learn domain-specific backbone models or require access to source domain data during adaptation, resulting in significant growth in training parameters and computational cost. In this paper, a Source-free Adaptive Gated Experts (SAGE-reID) method is introduced for person reID. Our SAGE-reID is a cost-effective, source-free MSDA method that first trains individual source-specific low-rank adapters (LoRA) through source-free UDA. Next, a lightweight gating network is introduced and trained to dynamically assign optimal merging weights for fusion of LoRA experts, enabling effective cross-domain knowledge transfer. While the number of backbone parameters remains constant across source domains, LoRA experts scale linearly but remain negligible in size (= 2% of the backbone), reducing both the memory consumption and risk of overfitting. Extensive experiments conducted on three challenging b
Low-Rank Expert Merging for Multi-Source Domain Adaptation in Person Re-Identification
Taha Mustapha Nehdi
Nairouz Mrabah
Atif Belal
Eric Granger
Spatio-Temporal Conditional Diffusion Models for Forecasting Future Multiple Sclerosis Lesion Masks Conditioned on Treatments
Gian Mario Favero
Ge Ya Luo
Douglas Arnold
Image-based personalized medicine has the potential to transform healthcare, particularly for diseases that exhibit heterogeneous progressio… (see more)n such as Multiple Sclerosis (MS). In this work, we introduce the first treatment-aware spatio-temporal diffusion model that is able to generate future masks demonstrating lesion evolution in MS. Our voxel-space approach incorporates multi-modal patient data, including MRI and treatment information, to forecast new and enlarging T2 (NET2) lesion masks at a future time point. Extensive experiments on a multi-centre dataset of 2131 patient 3D MRIs from randomized clinical trials for relapsing-remitting MS demonstrate that our generative model is able to accurately predict NET2 lesion masks for patients across six different treatments. Moreover, we demonstrate our model has the potential for real-world clinical applications through downstream tasks such as future lesion count and location estimation, binary lesion activity classification, and generating counterfactual future NET2 masks for several treatments with different efficacies. This work highlights the potential of causal, image-based generative models as powerful tools for advancing data-driven prognostics in MS.
Spatio-Temporal Conditional Diffusion Models for Forecasting Future Multiple Sclerosis Lesion Masks Conditioned on Treatments
Gian Mario Favero
Ge Ya Luo
Douglas Arnold
CISO: Species Distribution Modeling Conditioned on Incomplete Species Observations
Mélisande Teng
Robin Zbinden
Laura Pollock
Devis Tuia
Species distribution models (SDMs) are widely used to predict species'geographic distributions, serving as critical tools for ecological res… (see more)earch and conservation planning. Typically, SDMs relate species occurrences to environmental variables representing abiotic factors, such as temperature, precipitation, and soil properties. However, species distributions are also strongly influenced by biotic interactions with other species, which are often overlooked. While some methods partially address this limitation by incorporating biotic interactions, they often assume symmetrical pairwise relationships between species and require consistent co-occurrence data. In practice, species observations are sparse, and the availability of information about the presence or absence of other species varies significantly across locations. To address these challenges, we propose CISO, a deep learning-based method for species distribution modeling Conditioned on Incomplete Species Observations. CISO enables predictions to be conditioned on a flexible number of species observations alongside environmental variables, accommodating the variability and incompleteness of available biotic data. We demonstrate our approach using three datasets representing different species groups: sPlotOpen for plants, SatBird for birds, and a new dataset, SatButterfly, for butterflies. Our results show that including partial biotic information improves predictive performance on spatially separate test sets. When conditioned on a subset of species within the same dataset, CISO outperforms alternative methods in predicting the distribution of the remaining species. Furthermore, we show that combining observations from multiple datasets can improve performance. CISO is a promising ecological tool, capable of incorporating incomplete biotic information and identifying potential interactions between species from disparate taxa.
CISO: Species Distribution Modeling Conditioned on Incomplete Species Observations
Mélisande Teng
Robin Zbinden
Laura Pollock
Devis Tuia
Species distribution models (SDMs) are widely used to predict species'geographic distributions, serving as critical tools for ecological res… (see more)earch and conservation planning. Typically, SDMs relate species occurrences to environmental variables representing abiotic factors, such as temperature, precipitation, and soil properties. However, species distributions are also strongly influenced by biotic interactions with other species, which are often overlooked. While some methods partially address this limitation by incorporating biotic interactions, they often assume symmetrical pairwise relationships between species and require consistent co-occurrence data. In practice, species observations are sparse, and the availability of information about the presence or absence of other species varies significantly across locations. To address these challenges, we propose CISO, a deep learning-based method for species distribution modeling Conditioned on Incomplete Species Observations. CISO enables predictions to be conditioned on a flexible number of species observations alongside environmental variables, accommodating the variability and incompleteness of available biotic data. We demonstrate our approach using three datasets representing different species groups: sPlotOpen for plants, SatBird for birds, and a new dataset, SatButterfly, for butterflies. Our results show that including partial biotic information improves predictive performance on spatially separate test sets. When conditioned on a subset of species within the same dataset, CISO outperforms alternative methods in predicting the distribution of the remaining species. Furthermore, we show that combining observations from multiple datasets can improve performance. CISO is a promising ecological tool, capable of incorporating incomplete biotic information and identifying potential interactions between species from disparate taxa.
Personalized Feature Translation for Expression Recognition: An Efficient Source-Free Domain Adaptation Method
Masoumeh Sharafi
Soufiane Belharbi
Houssem Ben Salem
Ali Etemad
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Facial expression recognition (FER) models are employed in many video-based affective computing applications, such as human-computer interac… (see more)tion and healthcare monitoring. However, deep FER models often struggle with subtle expressions and high inter-subject variability, limiting their performance in real-world applications. To improve their performance, source-free domain adaptation (SFDA) methods have been proposed to personalize a pretrained source model using only unlabeled target domain data, thereby avoiding data privacy, storage, and transmission constraints. This paper addresses a challenging scenario where source data is unavailable for adaptation, and only unlabeled target data consisting solely of neutral expressions is available. SFDA methods are not typically designed to adapt using target data from only a single class. Further, using models to generate facial images with non-neutral expressions can be unstable and computationally intensive. In this paper, personalized feature translation (PFT) is proposed for SFDA. Unlike current image translation methods for SFDA, our lightweight method operates in the latent space. We first pre-train the translator on the source domain data to transform the subject-specific style features from one source subject into another. Expression information is preserved by optimizing a combination of expression consistency and style-aware objectives. Then, the translator is adapted on neutral target data, without using source data or image synthesis. By translating in the latent space, PFT avoids the complexity and noise of face expression generation, producing discriminative embeddings optimized for classification. Using PFT eliminates the need for image synthesis, reduces computational overhead (using a lightweight translator), and only adapts part of the model, making the method efficient compared to image-based translation.
Persistent Instability in LLM's Personality Measurements: Effects of Scale, Reasoning, and Conversation History
Saskia Helbling
Yorguin-Jose Mantilla-Ramos
Mahmood Hegazy
Alberto Tosato
D. Lemay
Large language models require consistent behavioral patterns for safe deployment, yet their personality-like traits remain poorly understood… (see more). We present PERSIST (PERsonality Stability in Synthetic Text), a comprehensive evaluation framework testing 25+ open-source models (1B-671B parameters) across 500,000+ responses. Using traditional (BFI-44, SD3) and novel LLM-adapted personality instruments, we systematically vary question order, paraphrasing, personas, and reasoning modes. Our findings challenge fundamental deployment assumptions: (1) Even 400B+ models exhibit substantial response variability (SD>0.4); (2) Minor prompt reordering alone shifts personality measurements by up to 20%; (3) Interventions expected to stabilize behavior, such as chain-of-thought reasoning, detailed personas instruction, inclusion of conversation history, can paradoxically increase variability; (4) LLM-adapted instruments show equal instability to human-centric versions, confirming architectural rather than translational limitations. This persistent instability across scales and mitigation strategies suggests current LLMs lack the foundations for genuine behavioral consistency. For safety-critical applications requiring predictable behavior, these findings indicate that personality-based alignment strategies may be fundamentally inadequate.
Persistent Instability in LLM's Personality Measurements: Effects of Scale, Reasoning, and Conversation History
Saskia Helbling
Yorguin-Jose Mantilla-Ramos
Mahmood Hegazy
Alberto Tosato
D. Lemay
Single-nucleus chromatin accessibility profiling identifies cell types and functional variants contributing to major depression.
Anjali Chawla
Laura M. Fiori
Wenmin Zang
Malosree Maitra
Jennie Yang
Dariusz Żurawek
Gabriella Frosi
Reza Rahimian
Haruka Mitsuhashi
MA Davoli
Ryan Denniston
Gary Gang Chen
V. Yerko
Deborah Mash
Kiran Girdhar
S. Akbarian
Naguib Mechawar
Matthew Suderman
Corina Nagy
Gustavo Turecki
Single-nucleus chromatin accessibility profiling identifies cell types and functional variants contributing to major depression
Anjali Chawla
Laura M. Fiori
Wenmin Zang
Malosree Maitra
Jennie Yang
Dariusz Żurawek
Gabriella Frosi
Reza Rahimian
Haruka Mitsuhashi
Maria Antonietta Davoli
Ryan Denniston
Gary Gang Chen
Volodymyr Yerko
Deborah Mash
Kiran Girdhar
Schahram Akbarian
Naguib Mechawar
Matthew Suderman
Corina Nagy
Gustavo Turecki
Single-nucleus chromatin accessibility profiling identifies cell types and functional variants contributing to major depression
Anjali Chawla
Laura M. Fiori
Wenmin Zang
Malosree Maitra
Jennie Yang
Dariusz Żurawek
Gabriella Frosi
Reza Rahimian
Haruka Mitsuhashi
Maria Antonietta Davoli
MA Davoli
Ryan Denniston
Gary Gang Chen
Volodymyr Yerko
Deborah Mash
Kiran Girdhar
Schahram Akbarian
Naguib Mechawar
Matthew Suderman … (see 3 more)
Corina Nagy
Gustavo Turecki