Publications

Session details: Digital entertainment technologies and arts track posters
Mike Preuss
Session details: Digital entertainment technologies and arts track papers
Mike Preuss
Stochastic Multiple Stream Decoding of Cortex Codes
Matthieu Arzel
Cyril Lahuec
Christophe Jego
Yvain Bruned
Being one of the most efficient solutions to implement forward error correction (FEC) decoders based on belief propagation, stochastic proce… (see more)ssing is thus a method worthy of consideration when addressing the decoding of emerging codes such as Cortex codes. This code family offers short block codes with large Hamming distances. Unfortunately, their construction introduces many hidden variables making them difficult to be efficiently decoded with digital circuits implementing the Sum-Product algorithm. With the introduction of multiple stochastic streams, the proposed solution alleviates the hidden variables problem thus yielding decoding performances close to optimal. Morevover, this new stochastic architecture is more efficient in terms of complexity-throughput ratio compared to recently published stochastic decoders using either edge or tracking forecast memories.
Stochastic Multiple Stream Decoding of Cortex Codes
Matthieu Arzel
Cyril Lahuec
Christophe Jego
Yvain Bruned
Being one of the most efficient solutions to implement forward error correction (FEC) decoders based on belief propagation, stochastic proce… (see more)ssing is thus a method worthy of consideration when addressing the decoding of emerging codes such as Cortex codes. This code family offers short block codes with large Hamming distances. Unfortunately, their construction introduces many hidden variables making them difficult to be efficiently decoded with digital circuits implementing the Sum-Product algorithm. With the introduction of multiple stochastic streams, the proposed solution alleviates the hidden variables problem thus yielding decoding performances close to optimal. Morevover, this new stochastic architecture is more efficient in terms of complexity-throughput ratio compared to recently published stochastic decoders using either edge or tracking forecast memories.
Stochastic Decoding of Turbo Codes
Quang Trung Dong
Matthieu Arzel
Christophe Jego
Stochastic computation is a technique in which operations on probabilities are performed on random bit streams. Stochastic decoding of forwa… (see more)rd error-correction (FEC) codes is inspired by this technique. This paper extends the application of the stochastic decoding approach to the families of convolutional codes and turbo codes. It demonstrates that stochastic computation is a promising solution to improve the data throughput of turbo decoders with very simple implementations. Stochastic fully-parallel turbo decoders are shown to achieve the error correction performance of conventional a posteriori probability (APP) decoders. To our knowledge, this is the first stochastic turbo decoder which decodes a state-of-the-art turbo code. Additionally, an innovative systematic technique is proposed to cope with stochastic additions, responsible for the throughput bottleneck.
Stochastic Decoding of Turbo Codes
Q. Dong
Matthieu Arzel
Christophe Jego
Stochastic computation is a technique in which operations on probabilities are performed on random bit streams. Stochastic decoding of forwa… (see more)rd error-correction (FEC) codes is inspired by this technique. This paper extends the application of the stochastic decoding approach to the families of convolutional codes and turbo codes. It demonstrates that stochastic computation is a promising solution to improve the data throughput of turbo decoders with very simple implementations. Stochastic fully-parallel turbo decoders are shown to achieve the error correction performance of conventional a posteriori probability (APP) decoders. To our knowledge, this is the first stochastic turbo decoder which decodes a state-of-the-art turbo code. Additionally, an innovative systematic technique is proposed to cope with stochastic additions, responsible for the throughput bottleneck.
Multiscale Gossip for Efficient Decentralized Averaging in Wireless Packet Networks
Konstantinos I. Tsianos
This paper describes and analyzes a hierarchical algorithm called Multiscale Gossip for solving the distributed average consensus problem in… (see more) wireless sensor networks. The algorithm proceeds by recursively partitioning a given network. Initially, nodes at the finest scale gossip to compute local averages. Then, using multi-hop communication and geographic routing to communicate between nodes that are not directly connected, these local averages are progressively fused up the hierarchy until the global average is computed. We show that the proposed hierarchical scheme with
Relaxation Dynamics in Stochastic Iterative Decoders
Saeed Sharifi Tehrani
Chris Winstead
Shie Mannor
Sheryl L. Howard
Vincent C. Gaudet
Stochastic decoding is a recently proposed approach for graph-based iterative error control decoding. We present and investigate three hyste… (see more)resis methods for stochastic decoding on graphs with cycles and show their close relationship with the successive relaxation method. Implementation results demonstrate the tradeoff in bit error rate performance with circuit complexity.
Relaxation Dynamics in Stochastic Iterative Decoders
S. Tehrani
C. Winstead
Shie Mannor
S. Howard
Vincent C. Gaudet
Stochastic decoding is a recently proposed approach for graph-based iterative error control decoding. We present and investigate three hyste… (see more)resis methods for stochastic decoding on graphs with cycles and show their close relationship with the successive relaxation method. Implementation results demonstrate the tradeoff in bit error rate performance with circuit complexity.
Majority-Based Tracking Forecast Memories for Stochastic LDPC Decoding
Saeed Sharifi Tehrani
Ali Naderi
Guy-Armand Kamendje
Saied Hemati
Shie Mannor
This paper proposes majority-based tracking forecast memories (MTFMs) for area efficient high throughput ASIC implementation of stochastic L… (see more)ow-Density Parity-Check (LDPC) decoders. The proposed method is applied for ASIC implementation of a fully parallel stochastic decoder that decodes the (2048, 1723) LDPC code from the IEEE 802.3an (10GBASE-T) standard. The decoder occupies a silicon core area of 6.38 mm2 in CMOS 90 nm technology, achieves a maximum clock frequency of 500 MHz, and provides a maximum core throughput of 61.3 Gb/s. The decoder also has good decoding performance and error-floor behavior and provides a bit error rate (BER) of about 4 × 10-13 at Eb/N0=5.15 dB. To the best of our knowledge, the implemented decoder is the most area efficient fully parallel soft -decision LDPC decoder reported in the literature.
Majority-Based Tracking Forecast Memories for Stochastic LDPC Decoding
S. Tehrani
Ali Naderi
Guy-Armand Kamendje
Saied Hemati
Shie Mannor
This paper proposes majority-based tracking forecast memories (MTFMs) for area efficient high throughput ASIC implementation of stochastic L… (see more)ow-Density Parity-Check (LDPC) decoders. The proposed method is applied for ASIC implementation of a fully parallel stochastic decoder that decodes the (2048, 1723) LDPC code from the IEEE 802.3an (10GBASE-T) standard. The decoder occupies a silicon core area of 6.38 mm2 in CMOS 90 nm technology, achieves a maximum clock frequency of 500 MHz, and provides a maximum core throughput of 61.3 Gb/s. The decoder also has good decoding performance and error-floor behavior and provides a bit error rate (BER) of about 4 × 10-13 at Eb/N0=5.15 dB. To the best of our knowledge, the implemented decoder is the most area efficient fully parallel soft -decision LDPC decoder reported in the literature.
Greedy Gossip With Eavesdropping
Deniz Ustebay
Boris Oreshkin
This paper presents greedy gossip with eavesdropping (GGE), a novel randomized gossip algorithm for distributed computation of the average c… (see more)onsensus problem. In gossip algorithms, nodes in the network randomly communicate with their neighbors and exchange information iteratively. The algorithms are simple and decentralized, making them attractive for wireless network applications. In general, gossip algorithms are robust to unreliable wireless conditions and time varying network topologies. In this paper, we introduce GGE and demonstrate that greedy updates lead to rapid convergence. We do not require nodes to have any location information. Instead, greedy updates are made possible by exploiting the broadcast nature of wireless communications. During the operation of GGE, when a node decides to gossip, instead of choosing one of its neighbors at random, it makes a greedy selection, choosing the node which has the value most different from its own. In order to make this selection, nodes need to know their neighbors' values. Therefore, we assume that all transmissions are wireless broadcasts and nodes keep track of their neighbors' values by eavesdropping on their communications. We show that the convergence of GGE is guaranteed for connected network topologies. We also study the rates of convergence and illustrate, through theoretical bounds and numerical simulations, that GGE consistently outperforms randomized gossip and performs comparably to geographic gossip on moderate-sized random geometric graph topologies.