Publications

Are LLMs Breaking MT Metrics? Results of the WMT24 Metrics Shared Task
Markus Freitag
Nitika Mathur
Daniel Deutsch
Chi-kiu Lo
Eleftherios Avramidis
Ricardo Rei
Brian Thompson
Frédéric Blain
Tom Kocmi
Jiayi Wang
Marianna Buchicchio
Chrysoula Zerva
AsmDocGen: Generating Functional Natural Language Descriptions for Assembly Code
Jesia Yuki
Mohammadhossein Amouei
Philippe Charland
Andrew Walenstein
Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy
Danqi Liao
Chen Liu
Benjamin W Christensen
Alexander Tong
Maximilian Nickel
Ian Adelstein
Entropy and mutual information in neural networks provide rich information on the learning process, but they have proven difficult to comput… (see more)e reliably in high dimensions. Indeed, in noisy and high-dimensional data, traditional estimates in ambient dimensions approach a fixed entropy and are prohibitively hard to compute. To address these issues, we leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures. Specifically, we define diffusion spectral entropy (DSE) in neural representations of a dataset as well as diffusion spectral mutual information (DSMI) between different variables representing data. First, we show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data that outperform classic Shannon entropy, nonparametric estimation, and mutual information neural estimation (MINE). We then study the evolution of representations in classification networks with supervised learning, self-supervision, or overfitting. We observe that (1) DSE of neural representations increases during training; (2) DSMI with the class label increases during generalizable learning but stays stagnant during overfitting; (3) DSMI with the input signal shows differing trends: on MNIST it increases, while on CIFAR-10 and STL-10 it decreases. Finally, we show that DSE can be used to guide better network initialization and that DSMI can be used to predict downstream classification accuracy across 962 models on ImageNet.
Asymmetry in the complexity of the multi-commodity network pricing problem
Quang Minh Bui
José Neto
Attention-based Class-Conditioned Alignment for Multi-Source Domain Adaptive Object Detection
Atif Belal
Akhil Meethal
Francisco Perdigon Romero
Eric Granger
Attention-based Class-Conditioned Alignment for Multi-Source Domain Adaptive Object Detection
Atif Belal
Akhil Meethal
Francisco Perdigon Romero
Eric Granger
An Attentive Approach for Building Partial Reasoning Agents from Pixels
We study the problem of building reasoning agents that are able to generalize in an effective manner. Towards this goal, we propose an end-t… (see more)o-end approach for building model-based reinforcement learning agents that dynamically focus their reasoning to the relevant aspects of the environment: after automatically identifying the distinct aspects of the environment, these agents dynamically filter out the relevant ones and then pass them to their simulator to perform partial reasoning. Unlike existing approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses show that the proposed approach allows for effective generalization in high-dimensional domains with raw observational inputs. We also perform ablation analyses to validate our design choices. Finally, we demonstrate through qualitative analyses that our approach actually allows for building agents that focus their reasoning on the relevant aspects of the environment.
BAND: Biomedical Alert News Dataset
Zihao Fu
Meiru Zhang
Zaiqiao Meng
Anya Okhmatovskaia
Nigel Collier
Benchmarking Vision Language Models for Cultural Understanding
Sjoerd van Steenkiste
Lisa Anne Hendricks
Karolina Stanczak
Foundation models and vision-language pre-training have notably advanced Vision Language Models (VLMs), enabling multimodal processing of vi… (see more)sual and linguistic data. However, their performance has been typically assessed on general scene understanding - recognizing objects, attributes, and actions - rather than cultural comprehension. This study introduces CulturalVQA, a visual question-answering benchmark aimed at assessing VLM's geo-diverse cultural understanding. We curate a collection of 2,378 image-question pairs with 1-5 answers per question representing cultures from 11 countries across 5 continents. The questions probe understanding of various facets of culture such as clothing, food, drinks, rituals, and traditions. Benchmarking VLMs on CulturalVQA, including GPT-4V and Gemini, reveals disparity in their level of cultural understanding across regions, with strong cultural understanding capabilities for North America while significantly lower performance for Africa. We observe disparity in their performance across cultural facets too, with clothing, rituals, and traditions seeing higher performances than food and drink. These disparities help us identify areas where VLMs lack cultural understanding and demonstrate the potential of CulturalVQA as a comprehensive evaluation set for gauging VLM progress in understanding diverse cultures.
BETAC: Bidirectional Encoder Transformer for Assembly Code Function Name Recovery
Guillaume Breyton
Mohd Saqib
Philippe Charland
Recovering function names from stripped binaries is a crucial and time-consuming task for software reverse engineering’ particularly in en… (see more)hancing network reliability, resilience, and security. This paper tackles the challenge of recovering function names in stripped binaries, a fundamental step in reverse engineering. The absence of syntactic information and the possibility of different code producing identical behavior complicate this task. To overcome these challenges, we introduce a novel model, the Bidirectional Encoder Transformer for Assembly Code (BETAC), leveraging a transformer-based architecture known for effectively processing sequential data. BETAC utilizes self-attention mechanisms and feed-forward networks to discern complex relationships within assembly code for precise function name prediction. We evaluated BETAC against various existing encoder and decoder models in diverse binary datasets, including benign and malicious codes in multiple formats. Our model demonstrated superior performance over previous techniques in certain metrics and showed resilience against code obfuscation.
Beyond Model Collapse: Scaling Up with Synthesized Data Requires Reinforcement
Yunzhen Feng
Pu Yang
Francois Charton
Julia Kempe
Beyond Model Collapse: Scaling Up with Synthesized Data Requires Reinforcement
Yunzhen Feng
Pu Yang
Francois Charton
Julia Kempe