Delivered in partnership with Indspire, this tailored career pathway is designed to empower Indigenous talent to learn, develop, and lead the evolution of AI. Applications for the 2025 program are open until January 31st.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Deep Discourse Analysis for Generating Personalized Feedback in Intelligent Tutor Systems
We explore creating automated, personalized feedback in an intelligent tutoring system (ITS). Our goal is to pinpoint correct and incorrect … (see more)concepts in student answers in order to achieve better student learning gains. Although automatic methods for providing personalized feedback exist, they do not explicitly inform students about which concepts in their answers are correct or incorrect. Our approach involves decomposing students answers using neural discourse segmentation and classification techniques. This decomposition yields a relational graph over all discourse units covered by the reference solutions and student answers. We use this inferred relational graph structure and a neural classifier to match student answers with reference solutions and generate personalized feedback. Although the process is completely automated and data-driven, the personalized feedback generated is highly contextual, domain-aware and effectively targets each student's misconceptions and knowledge gaps. We test our method in a dialogue-based ITS and demonstrate that our approach results in high-quality feedback and significantly improved student learning gains.
2021-05-18
Proceedings of the AAAI Conference on Artificial Intelligence (published)
Can meta-learning discover generic ways of processing time series (TS) from a diverse dataset so as to greatly improve generalization on new… (see more) TS coming from different datasets? This work provides positive evidence to this using a broad meta-learning framework which we show subsumes many existing meta-learning algorithms. Our theoretical analysis suggests that residual connections act as a meta-learning adaptation mechanism, generating a subset of task-specific parameters based on a given TS input, thus gradually expanding the expressive power of the architecture on-the-fly. The same mechanism is shown via linearization analysis to have the interpretation of a sequential update of the final linear layer. Our empirical results on a wide range of data emphasize the importance of the identified meta-learning mechanisms for successful zero-shot univariate forecasting, suggesting that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining, resulting in performance that is at least as good as that of state-of-practice univariate forecasting models.
2021-05-18
Proceedings of the AAAI Conference on Artificial Intelligence (published)
Visual saliency has emerged as a major visualization tool for interpreting deep reinforcement learning (RL) agents. However, much of the exi… (see more)sting research uses it as an analyzing tool rather than an inductive bias for policy learning. In this work, we use visual attention as an inductive bias for RL agents. We propose a novel self-supervised attention learning approach which can 1. learn to select regions of interest without explicit annotations, and 2. act as a plug for existing deep RL methods to improve the learning performance. We empirically show that the self-supervised attention-aware deep RL methods outperform the baselines in the context of both the rate of convergence and performance. Furthermore, the proposed self-supervised attention is not tied with specific policies, nor restricted to a specific scene. We posit that the proposed approach is a general self-supervised attention module for multi-task learning and transfer learning, and empirically validate the generalization ability of the proposed method. Finally, we show that our method learns meaningful object keypoints highlighting improvements both qualitatively and quantitatively.
2021-05-18
AAAI Conference on Artificial Intelligence (published)
Jumana Sara Tobias Carsten Michael Daniel Claudia Yvette Bhismadev Chris Ineke Daisy Flavio Jessica Vincent Pilar David Lindsay Hannah Joerg Rosemary J. Xavier Liogier David J. René Andre Maarten Nico Bethany Laurence Bob Gahan Antonio M. Barbara Amber N. V. Jessica Roberto Antonia San José Emily Roberto Heike Jack Steve C. R. Caroline Marcel P. Ahmad
Background: The initial injury burden from incident TBI is significantly amplified by recurrent TBI (rTBI). Unfortunately, research assessin… (see more)g the accuracy to conduct rTBI surveillance is not available. Accurate surveillance information on recurrent injuries is needed to justify the allocation of resources to rTBI prevention and to conduct high quality epidemiological research on interventions that mitigate this injury burden. This study evaluates the accuracy of administrative health data (AHD) surveillance case definitions for rTBI and estimates the 1-year rTBI incidence adjusted for measurement error. Methods: A 25% random sample of AHD for Montreal residents from 2000 to 2014 was used in this study. Four widely used TBI surveillance case definitions, based on the International Classification of Disease and on radiological exams of the head, were applied to ascertain suspected rTBI cases. Bayesian latent class models were used to estimate the accuracy of each case definition and the 1-year rTBI measurement-error-adjusted incidence without relying on a gold standard rTBI definition that does not exist, across children (18 years), adults (18-64 years), and elderly (> =65 years). Results: The adjusted 1-year rTBI incidence was 4.48 (95% CrI 3.42, 6.20) per 100 person-years across all age groups, as opposed to a crude estimate of 8.03 (95% CrI 7.86, 8.21) per 100 person-years. Patients with higher severity index TBI had a significantly higher incidence of rTBI compared to patients with lower severity index TBI. The case definition that identified patients undergoing a radiological examination of the head in the context of any traumatic injury was the most sensitive across children [0.46 (95% CrI 0.33, 0.61)], adults [0.79 (95% CrI 0.64, 0.94)], and elderly [0.87 (95% CrI 0.78, 0.95)]. The most specific case definition was the discharge abstract database in children [0.99 (95% CrI 0.99, 1.00)], and emergency room visits claims in adults/elderly [0.99 (95% CrI 0.99, 0.99)]. Median time to rTBI was the shortest in adults (75 days) and the longest in children (120 days). Conclusion: Conducting accurate surveillance and valid epidemiological research for rTBI using AHD is feasible when measurement error is accounted for.
There are many clinical contexts which require accurate detection and segmentation of all focal pathologies (e.g. lesions, tumours) in patie… (see more)nt images. In cases where there are a mix of small and large lesions, standard binary cross entropy loss will result in better segmentation of large lesions at the expense of missing small ones. Adjusting the operating point to accurately detect all lesions generally leads to oversegmentation of large lesions. In this work, we propose a novel reweighing strategy to eliminate this performance gap, increasing small pathology detection performance while maintaining segmentation accuracy. We show that our reweighing strategy vastly outperforms competing strategies based on experiments on a large scale, multi-scanner, multi-center dataset of Multiple Sclerosis patient images.